ﻻ يوجد ملخص باللغة العربية
Superconducting qubits are a promising candidate for building a quantum computer. A continued challenge for fast yet accurate gates to minimize the effects of decoherence. Here we apply numerical methods to design fast entangling gates, specifically the controlled Z, in an architecture where two qubits are coupled via a resonator. We find that the gates can be sped up by a factor of two and reach any target fidelity. We also discuss how systematic errors arising from experimental conditions affect the pulses and how to remedy them, providing a strategy for the experimental implementation of our results. We discuss the shape of the pulses, their spectrum and symmetry.
A system consisting of two qubits and a resonator is considered in the presence of different sources of noise, bringing to light the possibility for making the two qubits evolve in a synchronized way. A direct qubit-qubit interaction turns out to be
We analyze the coupling of two qubits via an epitaxial semiconducting junction. In particular, we consider three configurations that include pairs of transmons or gatemons as well as gatemon-like two qubits formed by an epitaxial four-terminal juncti
To realize fault-tolerant quantum computing, it is necessary to store quantum information in logical qubits with error correction functions, realized by distributing a logical state among multiple physical qubits or by encoding it in the Hilbert spac
We demonstrate diabatic two-qubit gates with Pauli error rates down to $4.3(2)cdot 10^{-3}$ in as fast as 18 ns using frequency-tunable superconducting qubits. This is achieved by synchronizing the entangling parameters with minima in the leakage cha
High fidelity two-qubit gates are fundamental for scaling up the superconducting number. We use two qubits coupled via a frequency-tunable coupler which can adjust the coupling strength, and demonstrate the CZ gate using two different schemes, adiaba