ﻻ يوجد ملخص باللغة العربية
We study the coupling of Pb0 dangling bond defects at the Si/SiO2 interface and 31P donors in an epitaxial layer directly underneath using electrically detected double electron-electron resonance (EDDEER). An exponential decay of the EDDEER signal is observed, which is attributed to a broad distribution of exchange coupling strengths J/2pi from 25 kHz to 3 MHz. Comparison of the experimental data with a numerical simulation of the exchange coupling shows that this range of coupling strengths corresponds to 31P-Pb0 distances ranging from 14 nm to 20 nm.
This work reports an ESR study of low energy, low fluence phosphorus ion implantation into silicon in order to observe the activation of phosphorus donors placed in close proximity to the Si-SiO2 interface. Electrical measurements, which were used to
SiC based metal-oxide-semiconductor field-effect transistors (MOSFETs) have gained a significant importance in power electronics applications. However, electrically active defects at the SiC/SiO$_2$ interface degrade the ideal behavior of the devices
We have measured the electrically detected magnetic resonance of channel-implanted donors in silicon field-effect transistors in resonant X- ($9.7:$GHz) and W-band ($94:$GHz) microwave cavities, with corresponding Zeeman fields of $0.35:$T and $3.36:
The electronic structure of an atomic-layer-deposited MoS2 monolayer on SiO2 was investigated using X-ray absorption spectroscopy (XAS) and synchrotron X-ray photoelectron spectroscopy (XPS). The angle-dependent evolution of the XAS spectra and the p
The authors demonstrate readout of electrically detected magnetic resonance at radio frequencies by means of an LCR tank circuit. Applied to a silicon field-effect transistor at milli-kelvin temperatures, this method shows a 25-fold increased signal-