ﻻ يوجد ملخص باللغة العربية
Plasmonics offers an enticing platform to manipulate light at the subwavelength scale. Currently, loss represents the most serious challenge impeding its progress and broad impact towards practical technology. In this regard, silver (Ag) is by far the preferred plasmonic material at optical frequencies, having the lowest loss among all metals in this frequency range. However, large discrepancies exist among widely quoted values of optical loss in Ag due to variations in sample preparation procedures that produce uncontrollable grain boundaries and defects associated with additional loss. A natural question arises: what are the intrinsic fundamental optical properties of Ag and its ultimate possibilities in the field of plasmonics? Using atomically-smooth epitaxial Ag films, we extracted new optical constants that reflect significantly reduced loss and measured greatly enhanced propagation distance of surface plasmon polaritons (SPPs) beyond what was previously considered possible. By establishing a new benchmark in the ultimate optical properties of Ag, these results will have a broad impact for metamaterials and plasmonic applications.
We present a study of the optical response of compact and hollow icosahedral clusters containing up to 868 silver atoms by means of time-dependent density functional theory. We have studied the dependence on size and morphology of both the sharp plas
We present an analytical model describing complex dynamics of a hybrid nonlinear system consisting of interacting carbon nanotubes (CNT) and a plasmonic metamaterial. Our model is based on the set of coupled equations, which incorporates well-establi
Transition metal oxide thin films show versatile electrical, magnetic, and thermal properties which can be tailored by deliberately introducing macroscopic grain boundaries via polycrystalline solids. In this study, we focus on the modification of th
Recently, studies have been carried out on attempts to combine surface-enhanced Surface-enhanced Raman spectroscopy (SERS) substrates that can be based on either localized surface plasmon (LSP) or surface plasmon polaritons (SPP) structures. By combi
Silver, especially in the form of nanostructures, is widely employed as an antimicrobial agent in a large range of commercial products. The origin of the biocidal mechanism has been elucidated in the last decades, and most likely originates from silv