ﻻ يوجد ملخص باللغة العربية
A schematic model for baryon excitations is presented in terms of a symmetric Dirac gyroscope, a relativistic model solvable in closed form, that reduces to a rotor in the non-relativistic limit. The model is then mapped on a nearest neighbour tight binding model. In its simplest one-dimensional form this model yields a finite equidistant spectrum. This is experimentally implemented as a chain of dielectric resonators under conditions where their coupling is evanescent and good agreement with the prediction is achieved.
We present a microwave realization of finite tight-binding graphene-like structures. The structures are realized using discs with a high index of refraction. The discs are placed on a metallic surface while a second surface is adjusted atop the discs
Interactions between the octet-baryons (B8) in the spin-flavor SU6 quark model are investigated in a unified coupled-channels framework of the resonating-group method (RGM). The interaction Hamiltonian for quarks consists of the phenomenological conf
Background: Weakly bound and unbound nuclei close to particle drip lines are laboratories of new nuclear structure physics at the extremes of neutron/proton excess. The comprehensive description of these systems requires an open quantum system framew
One of the primary goals of nuclear physics is studying the phase diagram of Quantum Chromodynamics, where a hypothetical critical point serves as a landmark. A systematic model-data comparison of heavy-ion collisions at center-of-mass energies betwe
A Poincare covariant Faddeev equation is presented, which enables the simultaneous prediction of meson and baryon observables using the leading-order in a truncation of the Dyson-Schwinger equations that can systematically be improved. The solution d