ﻻ يوجد ملخص باللغة العربية
We report on the spin properties of bright polariton solitons supported by an external pump to compensate losses. We observe robust circularly polarised solitons when a circularly polarised pump is applied, a result attributed to phase synchronisation between nondegenerate TE and TM polarised polariton modes at high momenta. For the case of a linearly polarised pump either s+ or s- circularly polarised bright solitons can be switched on in a controlled way by a s+ or s- writing beam respectively. This feature arises directly from the widely differing interaction strengths between co- and cross-circularly polarised polaritons. In the case of orthogonally linearly polarised pump and writing beams, the soliton emission on average is found to be unpolarised, suggesting strong spatial evolution of the soliton polarisation, a conclusion supported by polarisation correlation measurements. The observed results are in agreement with theory, which predicts stable circularly polarised solitons and unstable linearly polarised solitons resulting in spatial evolution of their polarisation.
We study the existence and stability of fundamental bright discrete solitons in a parity-time (PT)-symmetric coupler composed by a chain of dimers, that is modelled by linearly coupled discrete nonlinear Schrodinger equations with gain and loss terms
Soliton solutions are studied for paraxial wave propagation with intensity-dependent dispersion. Although the corresponding Lagrangian density has a singularity, analytical solutions, derived by the pseudo-potential method and the corresponding phase
Photons and excitons in a semiconductor microcavity interact to form exciton-polariton condensates. These are governed by a nonlinear quantum-mechanical system involving exciton and photon wavefunctions. We calculate all non-traveling harmonic solito
We study the topological phase of bright soliton with arbitrary velocity under the self-steepening effect. Such topological phase can be described by the topological vector potential and effective magnetic field. We find that the point-like magnetic
We study the transverse instability and dynamics of bright soliton stripes in two-dimensional nonlocal nonlinear media. Using a multiscale perturbation method, we derive analytically the first-order correction to the soliton shape, which features an