ﻻ يوجد ملخص باللغة العربية
We revisit the concept of minimal rigidity as applied to soft repulsive, frictionless sphere packings in two-dimensions with the introduction of the jamming graph. Minimal rigidity is a purely combinatorial property encoded via Lamans theorem in two-dimensions. It constrains the global, average coordination number of the graph, for example. However, minimal rigidity does not address the geometry of local mechanical stability. The jamming graph contains both properties of global mechanical stability at the onset of jamming and local mechanical stability. We demonstrate how jamming graphs can be constructed using local moves via the Henneberg construction such that these graphs fall under the jurisdiction of correlated percolation. We then probe how jamming graphs destabilize, or become unjammed, by deleting a bond and computing the resulting rigid cluster distribution. We also study how the system restabilizes with the addition of new contacts and how a jamming graph with extra/redundant contacts destabilizes. The latter endeavor allows us to probe a disc packing in the rigid phase and uncover a potentially new diverging lengthscale associated with the random deletion of contacts as compared to the study of cut-out (or frozen in) subsystems.
We discuss a microscopic scheme to compute the rigidity of glasses or the plateau modulus of supercooled liquids by twisting replicated liquids. We first summarize the method in the case of harmonic glasses with analytic potentials. Then we discuss h
Rigidity regulates the integrity and function of many physical and biological systems. This is the first of two papers on the origin of rigidity, wherein we propose that energetic rigidity, in which all non-trivial deformations raise the energy of a
This note gives a detailed proof of the following statement. Let $din mathbb{N}$ and $m,n ge d + 1$, with $m + n ge binom{d+2}{2} + 1$. Then the complete bipartite graph $K_{m,n}$ is generically globally rigid in dimension $d$.
Many textbooks dealing with surface tension favor the thermodynamic approach (minimization of some thermodynamic potential such as free energy) over the mechanical approach (balance of forces) to describe capillary phenomena, stating that the latter
Large scale modelling of fluid flow coupled with solid failure in geothermal reservoirs or hydrocarbon extraction from reservoir rocks usually involves behaviours at two scales: lower scale of the inelastic localization zone, and larger scale of the