ﻻ يوجد ملخص باللغة العربية
We study the factorial moments (Fq), the factorial cumulants (Kq) and the ratio of Kq to Fq (Hq = Kq=Fq) in pp/pp collisions using an updated approach, in which the multiplicity distribution is related to the eikonal function. The QCD inspired eikonal model adopted contains contributions of quark-quark, quark-gluon and gluon-gluon interactions. Our work shows that the approach can reproduce the collision energy dependence of the Fq moments, correctly predicts that the first minimum of the Hq lies around q = 5 and qualitatively reproduces the oscillations of the Hq moments, as shown in the experimental data and predicted by QCD at preasymptotic energy. The result of this study seems to indicate that the Hq oscillations are manifestation of semihard component in the multiparticle production process. Predictions for multiplicity distribution and Hq moments at the LHC energy of 14 TeV are presented.
We derive joint factorial moment identities for point processes with Papangelou intensities. Our proof simplifies previous approaches to related moment identities and includes the setting of Poisson point processes. Applications are given to random t
The high-order cumulants and factorial cumulants of conserved charges are suggested to study the critical dynamics in heavy ion collisions. In this paper, using parametric representation of the 3-dimensional Ising model, the sign distribution on the
A search for power-law fluctuations within the framework of the intermittency method is ongoing to locate the critical point of the strongly interacting matter. In particular, experimental data on proton and pion production in heavy-ion collisions ar
We discuss properties and applications of factorial cumulants of various particle numbers and for their mixed channels measured by the event-by-event analysis in relativistic heavy-ion collisions. After defining the factorial cumulants for systems wi
In this paper, we develop a parameter estimation method for factorially parametrized models such as Factorial Gaussian Mixture Model and Factorial Hidden Markov Model. Our contributions are two-fold. First, we show that the emission matrix of the sta