ﻻ يوجد ملخص باللغة العربية
We report the first experimental observation of a characteristic nonlinear threshold behavior from dc dynamical response as an evidence for a Wigner crystallization in high-purity GaAs 2D hole systems in zero magnetic field. The system under increasing current drive exhibits voltage oscillations with negative differential resistance. They confirm the coexistence of a moving crystal along with striped edge states as observed for electrons on helium surfaces. However, the threshold is well below the typical classical levels due to a different pinning and depinning mechanism that is possibly related to a quantum process.
A sufficiently large perpendicular magnetic field quenches the kinetic (Fermi) energy of an interacting two-dimensional (2D) system of fermions, making them susceptible to the formation of a Wigner solid (WS) phase in which the charged carriers organ
A metal-insulator transition in two-dimensional electron gases at B=0 is found in Ga(Al)As heterostructures, where a high density of self-assembled InAs quantum dots is incorporated just 3 nm below the heterointerface. The transition occurs at resist
Since the discovery of the Fractional Quantum Hall Effect in 1982 there has been considerable theoretical discussion on the possibility of fractional quantization of conductance in the absence of Landau levels formed by a quantizing magnetic field. A
While the dynamics for three-dimensional axially symmetric two-electron quantum dots with parabolic confinement potentials is in general non-separable we have found an exact separability with three quantum numbers for specific values of the magnetic
The ground state energy and the lowest excitations of a two dimensional Wigner crystal in a perpendicular magnetic field with one and two electrons per cell is investigated. In case of two electrons per lattice site, the interaction of the electrons