ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational study of the extremely slow nova V1280 Scorpii

106   0   0.0 ( 0 )
 نشر من قبل Hiroyuki Naito
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present multi-color light curves and optical spectra of V1280 Scorpii obtained from 2007 to 2012. It is shown that V1280 Sco is the extremely slow nova and the mass of white dwarf appears to be $sim$ 0.6 M$odot$ or lower. Blue-shifted multiple absorption lines of Na {sc i} D, Ca {sc ii} HK, and He {sc i*} are detected on high-resolution spectra. We also discuss that an approach using metastable He absorption lines is useful to investigate structures of nova shells.



قيم البحث

اقرأ أيضاً

104 - H. Naito , S. Mizoguchi , A. Arai 2012
We present optical ($B$, $V$, $R_{rm c}$, $I_{rm c}$ and $y$) and near infrared ($J$, $H$ and $K_{rm s}$) photometric and spectroscopic observations of a classical nova V1280 Scorpii for five years from 2007 to 2011. Our photometric observations show a declining event in optical bands shortly after the maximum light which continues $sim$ 250 days. The event is most probably caused by a dust formation. The event is accompanied by a short ($sim$ 30 days) re-brightening episode ($sim$ 2.5 mag in $V$), which suggests a re-ignition of the surface nuclear burning. After 2008, the $y$ band observations show a very long plateau at around $y$ = 10.5 for more than 1000 days until April 2011 ($sim$ 1500 days after the maximum light). The nova had taken a very long time ($sim$ 50 months) before entering the nebular phase (clear detection of both [ion{O}{iii}] 4959 and 5007) and is still continuing to generate the wind caused by H-burning. The finding suggests that V1280 Sco is going through the historically slowest evolution. The interval from the maximum light (2007 February 16) to the beginning of the nebular phase is longer than any previously known slow novae: V723 Cas (18 months), RR Pic (10 months), or HR Del (8 months). It suggests that the mass of a white dwarf in the V1280 Sco system might be 0.6 $M_mathrm{sun}$ or smaller. The distance, based on our measurements of the expansion velocity combined with the directly measured size of the dust shell, is estimated to be 1.1 $pm$ 0.5 kpc.
We present the results of our photometric and spectroscopic observations of Nova Sco 2007 N.1 (V1280 Sco). The photometric data was represented by a single data point in the light curve since the observation was carried out only for one night. The sp ectra cover two different phases of the objects evolution during the outburst, i.e. pre-maximum and post-maximum. Measurements of the P-Cygni profile on Na I D line (5889 AA) was derived as the velocity of shell expansion, yielding $1567.43 pm 174.14$ km s$^{-1}$. We conclude that V1280 Sco is a fast Fe II-type nova.
121 - H. Naito , A. Tajitsu , A. Arai 2012
We report the discovery of blue-shifted metastable He I* absorption lines at 3188 A and 3889 A with multiple components on high-resolution spectra (R ~ 60,000) of V1280 Scorpii. Similar multiple absorption lines associated with Na I D doublet and Ca II H and K are observed. Na I D doublet absorption lines have been observed since 2009, while the metastable He I* absorption lines were absent in 2009 and were detected in 2011 (four years after the burst). We find different time variations in depths and velocities of blue-shifted absorption components among He I*, Na I, and Ca II. The complex time evolutions of these lines can be explained by assuming changes in density and recombination/ionization rate when the ejecta expand and the photosphere contracts to become hotter. The multiple absorption lines originate in the ejected materials consisting of clumpy components, which obscure a significant part of the continuum emitting region. We estimate the total mass of the ejected material to be on the order of ~ 10^{-4} Mo, using metastable He I* 3188 and 3889 absorption lines.
V1280 Sco is one of the slowest dust-forming nova ever historically observed. We performed multi-epoch high-spatial resolution observations of the circumstellar dusty environment of V1280 Sco to investigate the level of asymmetry of the ejecta We obs erved V1280 Sco in 2009, 2010 and 2011 using unprecedented high angular resolution techniques. We used the NACO/VLT adaptive optics system in the J, H and K bands, together with contemporaneous VISIR/VLT mid-IR imaging that resolved the dust envelope of V1280 Sco, and SINFONI/VLT observations secured in 2011. We report the discovery of a dusty hourglass-shaped bipolar nebula. The apparent size of the nebula increased from 0.30 x 0.17 in July 2009 to 0.64 x 0.42 in July 2011. The aspect ratio suggests that the source is seen at high inclination. The central source shines efficiently in the K band and represents more than 56+/-5% of the total flux in 2009, and 87+/-6% in 2011. A mean expansion rate of 0.39+/-0.03 mas per day is inferred from the VISIR observations in the direction of the major axis, which represents a projected upper limit. Assuming that the dust shell expands in that direction as fast as the low-excitation slow ejecta detected in spectroscopy, this yields a lower limit distance to V1280 Sco of 1kpc; however, the systematic errors remain large due to the complex shape and velocity field of the dusty ejecta. The dust seems to reside essentially in the polar caps and no infrared flux is detected in the equatorial regions in the latest dataset. This may imply that the mass-loss was dominantly polar.
113 - M. P. Maxwell , M. T. Rushton , 2013
VLT and SALT spectroscopy of U Sco were obtained $sim$18 and $sim$30 months after the 2010 outburst. From these spectra the accretion disc is shown to take at least 18 months to become fully reformed. The spectral class of the companion is constraine d to be F8$^{+5}_{-6}$,IV-V at the 95% confidence level when the irradiated face of the companion is visible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا