ترغب بنشر مسار تعليمي؟ اضغط هنا

Gluon production in the Lipatov effective action formalism

101   0   0.0 ( 0 )
 نشر من قبل M.I. Vyazovsky
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Gluon production on two scattering centers is studied in the formalism of reggeized gluons. Different contributions to the inclusive cross-section are derived with the help of the Lipatov effective action. The AGK relations between these contributions are established. The found inclusive cross-section is compared to the one in the dipole picture and demonstrated to be the same.

قيم البحث

اقرأ أيضاً

Radial excitations of the quark-antiquark string sweeping the Wilson-loop area are considered in the framework of the effective-action formalism. Identifying these excitations with the daughter Regge trajectories, we find corrections which they produ ce to the constituent quark mass. The energy of the quark-antiquark pair turns out to be mostly saturated by the constituent quark masses, rather than by the elongation of the quark-antiquark string. Specifically, while the constituent quark mass turns out to increase as the square root of the radial-excitation quantum number, the energy of the string increases only as the fourth root of that number.
We introduce classical and quantum antifields in the reparametrization-invariant effective action, and derive a deformed classical master equation.
In the framework of the QCD effective action the vertices of gluon emission in interaction of reggeons are studied in the limit of small longitudinal momenta of the emitted gluon. It is found that the vertices drastically simplify in this limit so th at the gluon becomes emitted from a single reggeon coupled to the projectile and target via multireggeon vertices. Contribution from this kinematical region is studied for double and 2x2 elementary collisions inside the composite projectile and target.
We calculate the one-loop effective potential at finite temperature for a system of massless scalar fields with quartic interaction $lambdaphi^4$ in the framework of the boundary effective theory (BET) formalism. The calculation relies on the solutio n of the classical equation of motion for the field, and Gaussian fluctuations around it. Our result is non-perturbative and differs from the standard one-loop effective potential for field values larger than $T/sqrt{lambda}$.
145 - Sang Pyo Kim 2008
Some astrophysical objects are supposed to have very strong electromagnetic fields above the critical strength. Quantum fluctuations due to strong electromagnetic fields modify the Maxwell theory and particularly electric fields make the vacuum unsta ble against pair production of charged particles. We study the strong field effect such as the effective action and the Schwinger pair production in scalar QED.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا