ﻻ يوجد ملخص باللغة العربية
Theories of $(d,p)$ reactions frequently use a formalism based on a transition amplitude that is dominated by the components of the total three-body scattering wave function where the spatial separation between the incoming neutron and proton is confined by the range of the $n$-$p$ interaction, $V_{np}$. By comparison with calculations based on the CDCC method we show that the $(d,p)$ transition amplitude is dominated by the first term of the expansion of the three-body wave function in a complete set of Weinberg states. We use the uc{132}{Sn}(d,p) uc{133} {Sn} reaction at 30 and 100 MeV as examples of contemporary interest. The generality of this observed dominance and its implications for future theoretical developments are discussed.
The purpose of this paper is to develop an alternative theory of deuteron stripping to resonance states based on the surface integral formalism of Kadyrov et al. [Ann. Phys. 324, 1516 (2009)] and continuum-discretized coupled channels (CDCC). First
We calculate the magnetic form factor of the deuteron up to O(eP^4) in the chiral EFT expansion of the electromagnetic current operator. The two LECs which enter the two-body part of the isoscalar NN three-current operator are fit to experimental dat
We present a high-accuracy calculation of the deuteron structure radius in chiral effective field theory. Our analysis employs the state-of-the-art semilocal two-nucleon potentials and takes into account two-body contributions to the charge density o
Deuteron-deuteron elastic scattering and transfer reactions in the energy regime above four-nucleon breakup threshold are described by solving exact four-particle equations for transition operators. Several realistic nuclear interaction models are us
It is shown that the ratio of the deuteron and proton analysing powers in proton-deuteron elastic scattering at small angles is sensitive to subtle effects in a theoretical description. These include the transverse spin-spin term in the elementary nu