ترغب بنشر مسار تعليمي؟ اضغط هنا

Delayed self-regulation leads to novel states in epigenetic landscapes

350   0   0.0 ( 0 )
 نشر من قبل Buddhapriya Chakrabarti
 تاريخ النشر 2013
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The epigenetic pathway of a cell as it differentiates from a stem cell state to a mature lineage-committed one has been historically understood in terms of Waddingtons landscape, consisting of hills and valleys. The smooth top and valley-strewn bottom of the hill represents their undifferentiated and differentiated states respectively. Although mathematical ideas rooted in nonlinear dynamics and bifurcation theory have been used to quantify this picture, the importance of time delays arising from multistep chemical reactions or cellular shape transformations have been ignored so far. We argue that this feature is crucial in understanding cell differentiation and explore the role of time delay in a model of a single gene regulatory circuit. We show that the interplay of time-dependant drive and delay introduces a new regime where the system shows sustained oscillations between the two admissible steady states. We interpret these results in the light of recent perplexing experiments on inducing the pluripotent state in mouse somatic cells. We also comment on how such an oscillatory state can provide a framework for understanding more general feedback circuits in cell development.



قيم البحث

اقرأ أيضاً

Statistical physics provides a useful perspective for the analysis of many complex systems; it allows us to relate microscopic fluctuations to macroscopic observations. Developmental biology, but also cell biology more generally, are examples where a pparently robust behaviour emerges from highly complex and stochastic sub-cellular processes. Here we attempt to make connections between different theoretical perspectives to gain qualitative insights into the types of cell-fate decision making processes that are at the heart of stem cell and developmental biology. We discuss both dynamical systems as well as statistical mechanics perspectives on the classical Waddington or epigenetic landscape. We find that non-equilibrium approaches are required to overcome some of the shortcomings of classical equilibrium statistical thermodynamics or statistical mechanics in order to shed light on biological processes, which, almost by definition, are typically far from equilibrium.
We present a minimal motif model for transmembrane cell signaling. The model assumes signaling events taking place in spatially distributed nanoclusters regulated by a birth/death dynamics. The combination of these spatio-temporal aspects can be modu lated to provide a robust and high-fidelity response behavior without invoking sophisticated modeling of the signaling process as a sequence of cascade reactions and fine-tuned parameters. Our results show that the fact that the distributed signaling events take place in nanoclusters with a finite lifetime regulated by local production is sufficient to obtain a robust and high-fidelity response.
Cells and organisms follow aligned structures in their environment, a process that can generate persistent migration paths. Kinetic transport equations are a popular modelling tool for describing biological movements at the mesoscopic level, yet thei r formulations usually assume a constant turning rate. Here we relax this simplification, extending to include a turning rate that varies according to the anisotropy of a heterogeneous environment. We extend known methods of parabolic and hyperbolic scaling and apply the results to cell movement on micro-patterned domains. We show that inclusion of orientation dependence in the turning rate can lead to persistence of motion in an otherwise fully symmetric environment, and generate enhanced diffusion in structured domains.
295 - M. Ebert , W. Paul 2009
Financial markets display scale-free behavior in many different aspects. The power-law behavior of part of the distribution of individual wealth has been recognized by Pareto as early as the nineteenth century. Heavy-tailed and scale-free behavior of the distribution of returns of different financial assets have been confirmed in a series of works. The existence of a Pareto-like distribution of the wealth of market participants has been connected with the scale-free distribution of trading volumes and price-returns. The origin of the Pareto-like wealth distribution, however, remained obscure. Here we show that it is the process of trading itself that under two mild assumptions spontaneously leads to a self-organization of the market with a Pareto-like wealth distribution for the market participants and at the same time to a scale-free behavior of return fluctuations. These assumptions are (i) everybody trades proportional to his current capacity and (ii) supply and demand determine the relative value of the goods.
In single molecule laser optical tweezer (LOT) pulling experiments a protein or RNA is juxtaposed between DNA handles that are attached to beads in optical traps. The LOT generates folding trajectories under force in terms of time-dependent changes i n the distance between the beads. How to construct the full intrinsic folding landscape (without the handles and the beads) from the measured time series is a major unsolved problem. By using rigorous theoretical methods---which account for fluctuations of the DNA handles, rotation of the optical beads, variations in applied tension due to finite trap stiffness, as well as environmental noise and the limited bandwidth of the apparatus---we provide a tractable method to derive intrinsic free energy profiles. We validate the method by showing that the exactly calculable intrinsic free energy profile for a Generalized Rouse Model, which mimics the two-state behavior in nucleic acid hairpins, can be accurately extracted from simulated time series in a LOT setup regardless of the stiffness of the handles. We next apply the approach to trajectories from coarse grained LOT molecular simulations of a coiled-coil protein based on the GCN4 leucine zipper, and obtain a free energy landscape that is in quantitative agreement with simulations performed without the beads and handles. Finally, we extract the intrinsic free energy landscape from experimental LOT measurements for the leucine zipper, which is independent of the trap parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا