ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy And Mass Assembly (GAMA): Linking Star Formation Histories and Stellar Mass Growth

160   0   0.0 ( 0 )
 نشر من قبل Amanda Bauer
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present evidence for stochastic star formation histories in low-mass (M* < 10^10 Msun) galaxies from observations within the Galaxy And Mass Assembly (GAMA) survey. For ~73,000 galaxies between 0.05<z<0.32, we calculate star formation rates (SFR) and specific star formation rates (SSFR = SFR/M*) from spectroscopic Halpha measurements and apply dust corrections derived from Balmer decrements. We find a dependence of SSFR on stellar mass, such that SSFRs decrease with increasing stellar mass for star-forming galaxies, and for the full sample, SSFRs decrease as a stronger function of stellar mass. We use simple parametrizations of exponentially declining star formation histories to investigate the dependence on stellar mass of the star formation timescale and the formation redshift. We find that parametrizations previously fit to samples of z~1 galaxies cannot recover the distributions of SSFRs and stellar masses observed in the GAMA sample between 0.05<z<0.32. In particular, a large number of low-mass (M* < 10^10 Msun) galaxies are observed to have much higher SSFRs than can be explained by these simple models over the redshift range of 0.05<z<0.32, even when invoking mass-dependent staged evolution. For such a large number of galaxies to maintain low stellar masses, yet harbour such high SSFRs, requires the late onset of a weak underlying exponentially declining SFH with stochastic bursts of star formation superimposed.



قيم البحث

اقرأ أيضاً

We present self-consistent star formation rates derived through pan-spectral analysis of galaxies drawn from the Galaxy and Mass Assembly (GAMA) survey. We determine the most appropriate form of dust obscuration correction via application of a range of extinction laws drawn from the literature as applied to Halpha, [O{II}] and UV luminosities. These corrections are applied to a sample of 31,508 galaxies from the GAMA survey at z < 0.35. We consider several different obscuration curves, including those of Milky Way, Calzetti (2001) and Fischera and Dopita (2005) curves and their effects on the observed luminosities. At the core of this technique is the observed Balmer decrement, and we provide a prescription to apply optimal obscuration corrections using the Balmer decrement. We carry out an analysis of the star formation history (SFH) using stellar population synthesis tools to investigate the evolutionary history of our sample of galaxies as well as to understand the effects of variation in the Initial Mass Function (IMF) and the effects this has on the evolutionary history of galaxies. We find that the Fischera and Dopita (2005) obscuration curve with an R_{v} value of 4.5 gives the best agreement between the different SFR indicators. The 2200A feature needed to be removed from this curve to obtain complete consistency between all SFR indicators suggesting that this feature may not be common in the average integrated attenuation of galaxy emission. We also find that the UV dust obscuration is strongly dependent on the SFR.
151 - A. M. Hopkins 2013
The Galaxy And Mass Assembly (GAMA) survey is a multiwavelength photometric and spectroscopic survey, using the AAOmega spectrograph on the Anglo-Australian Telescope to obtain spectra for up to ~300000 galaxies over 280 square degrees, to a limiting magnitude of r_pet < 19.8 mag. The target galaxies are distributed over 0<z<0.5 with a median redshift of z~0.2, although the redshift distribution includes a small number of systems, primarily quasars, at higher redshifts, up to and beyond z=1. The redshift accuracy ranges from sigma_v~50km/s to sigma_v~100km/s depending on the signal-to-noise of the spectrum. Here we describe the GAMA spectroscopic reduction and analysis pipeline. We present the steps involved in taking the raw two-dimensional spectroscopic images through to flux-calibrated one-dimensional spectra. The resulting GAMA spectra cover an observed wavelength range of 3750<lambda<8850 A at a resolution of R~1300. The final flux calibration is typically accurate to 10-20%, although the reliability is worse at the extreme wavelength ends, and poorer in the blue than the red. We present details of the measurement of emission and absorption features in the GAMA spectra. These measurements are characterised through a variety of quality control analyses detailing the robustness and reliability of the measurements. We illustrate the quality of the measurements with a brief exploration of elementary emission line properties of the galaxies in the GAMA sample. We demonstrate the luminosity dependence of the Balmer decrement, consistent with previously published results, and explore further how Balmer decrement varies with galaxy mass and redshift. We also investigate the mass and redshift dependencies of the [NII]/Halpha vs [OIII]/Hbeta spectral diagnostic diagram, commonly used to discriminate between star forming and nuclear activity in galaxies.
We report an expanded sample of visual morphological classifications from the Galaxy and Mass Assembly (GAMA) survey phase two, which now includes 7,556 objects (previously 3,727 in phase one). We define a local (z <0.06) sample and classify galaxies into E, S0-Sa, SB0-SBa, Sab-Scd, SBab-SBcd, Sd-Irr, and little blue spheroid types. Using these updated classifications, we derive stellar mass function fits to individual galaxy populations divided both by morphological class and more general spheroid- or disk-dominated categories with a lower mass limit of log(Mstar/Msun) = 8 (one dex below earlier morphological mass function determinations). We find that all individual morphological classes and the combined spheroid-/bulge-dominated classes are well described by single Schechter stellar mass function forms. We find that the total stellar mass densities for individual galaxy populations and for the entire galaxy population are bounded within our stellar mass limits and derive an estimated total stellar mass density of rho_star = 2.5 x 10^8 Msun Mpc^-3 h_0.7, which corresponds to an approximately 4% fraction of baryons found in stars. The mass contributions to this total stellar mass density by galaxies that are dominated by spheroidal components (E and S0-Sa classes) and by disk components (Sab-Scd and Sd-Irr classes) are approximately 70% and 30%, respectively.
Using the complete GAMA-I survey covering ~142 sq. deg. to r=19.4, of which ~47 sq. deg. is to r=19.8, we create the GAMA-I galaxy group catalogue (G3Cv1), generated using a friends-of-friends (FoF) based grouping algorithm. Our algorithm has been te sted extensively on one family of mock GAMA lightcones, constructed from Lambda-CDM N-body simulations populated with semi-analytic galaxies. Recovered group properties are robust to the effects of interlopers and are median unbiased in the most important respects. G3Cv1 contains 14,388 galaxy groups (with multiplicity >= 2$), including 44,186 galaxies out of a possible 110,192 galaxies, implying ~40% of all galaxies are assigned to a group. The similarities of the mock group catalogues and G3Cv1 are multiple: global characteristics are in general well recovered. However, we do find a noticeable deficit in the number of high multiplicity groups in GAMA compared to the mocks. Additionally, despite exceptionally good local spatial completeness, G3Cv1 contains significantly fewer compact groups with 5 or more members, this effect becoming most evident for high multiplicity systems. These two differences are most likely due to limitations in the physics included of the current GAMA lightcone mock. Further studies using a variety of galaxy formation models are required to confirm their exact origin.
We present an estimate of the galaxy stellar mass function and its division by morphological type in the local (0.025 < z < 0.06) Universe. Adopting robust morphological classifications as previously presented (Kelvin et al.) for a sample of 3,727 ga laxies taken from the Galaxy And Mass Assembly survey, we define a local volume and stellar mass limited sub-sample of 2,711 galaxies to a lower stellar mass limit of M = 10^9.0 M_sun. We confirm that the galaxy stellar mass function is well described by a double Schechter function given by M* = 10^10.64 M_sun, {alpha}1 = -0.43, {phi}*1 = 4.18 dex^-1 Mpc^-3, {alpha}2 = -1.50 and {phi}*2 = 0.74 dex^-1 Mpc^-3. The constituent morphological-type stellar mass functions are well sampled above our lower stellar mass limit, excepting the faint little blue spheroid population of galaxies. We find approximately 71+3-4% of the stellar mass in the local Universe is found within spheroid dominated galaxies; ellipticals and S0-Sas. The remaining 29+4-3% falls predominantly within late type disk dominated systems, Sab-Scds and Sd-Irrs. Adopting reasonable bulge-to-total ratios implies that approximately half the stellar mass today resides in spheroidal structures, and half in disk structures. Within this local sample, we find approximate stellar mass proportions for E : S0-Sa : Sab-Scd : Sd-Irr of 34 : 37 : 24 : 5.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا