ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of the gas kinematics of galaxies in cosmological simulations

164   0   0.0 ( 0 )
 نشر من قبل Maria Emilia De Rossi
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Maria E. De Rossi




اسأل ChatGPT حول البحث

We studied the evolution of the gas kinematics of galaxies by performing hydrodynamical simulations in a cosmological scenario. We paid special attention to the origin of the scatter of the Tully-Fisher relation and the features which could be associated with mergers and interactions. We extended the study by De Rossi et al. (2010) and analysed their whole simulated sample which includes both, gas disc-dominated and spheroid-dominated systems. We found that mergers and interactions can affect the rotation curves directly or indirectly inducing a scatter in the Tully-Fisher Relation larger than the simulated evolution since z=3. In agreement with previous works, kinematical indicators which combine the rotation velocity and dispersion velocity in their definitions lead to a tighter relation. In addition, when we estimated the rotation velocity at the maximum of the rotation curve, we obtained the best proxy for the potential well regardless of morphology.

قيم البحث

اقرأ أيضاً

(Abridged) We present an investigation of kinematical imprints of AGN feedback on the Warm Ionized gas Medium (WIM) of massive early-type galaxies (ETGs). To this end, we take a two-fold approach that involves a comparative analysis of Halpha velocit y fields in 123 local ETGs from the CALIFA integral field spectroscopy survey with 20 simulated galaxies from high-resolution hydrodynamic cosmological SPHgal simulations. The latter were re-simulated for two modeling setups, one with and another without AGN feedback. In order to quantify the effects of AGN feedback on gas kinematics we measure three parameters that probe deviations from simple regular rotation using the kinemetry package. These indicators trace the possible presence of distinct kinematic components in Fourier space (k3,5/k1), variations in the radial profile of the kinematic major axis (sigma_PA), and offsets between the stellar and gas velocity fields (Delta Phi). These quantities are monitored in the simulations from a redshift 3 to 0.2 to assess the connection between black hole accretion history, stellar mass growth and kinematical perturbation of the WIM. Observed local massive galaxies show a broad range of irregularities, indicating disturbed warm gas motions, irrespective of being classified via diagnostic lines as AGN or not. Simulations of massive galaxies with AGN feedback generally exhibit higher irregularity parameters than without AGN feedback, more consistent with observations. Besides AGN feedback, other processes like major merger events or infalling gas clouds can lead to elevated irregularity parameters, but they are typically of shorter duration. More specifically, k3,5/k1 is most sensitive to AGN feedback, whereas Delta Phi is most strongly affected by gas infall.
76 - Romeel Dave 2011
We use cosmological hydrodynamic simulations to investigate how inflows, star formation, and outflows govern the the gaseous and metal content of galaxies. In our simulations, galaxy metallicities are established by a balance between inflows and outf lows as governed by the mass outflow rate, implying that the mass-metallicity relation reflects how the outflow rate varies with stellar mass (M*). Gas content is set by a competition between inflow into and gas consumption within the ISM, the latter being governed by the SF law, while the former is impacted by both wind recycling and preventive feedback. Stochastic variations in the inflow rate move galaxies off the equilibrium M*-Z and Z*-fgas relations in a manner correlated with star formation rate, and the scatter is set by the timescale to re-equilibrate. The evolution of both relations from z=3-0 is slow, as individual galaxies tend to evolve mostly along the relations. Gas fractions at a given M* slowly decrease with time because the cosmic inflow rate diminishes faster than the consumption rate, while metallicities slowly increase as infalling gas becomes more enriched. Observations from z~3-0 are better matched by simulations employing momentum-driven wind scalings rather than constant wind speeds, but all models predict too low gas fractions at low masses and too high metallicities at high M*. All our models reproduce observed second-parameter trends of the mass-metallicity relation with star formation rate and environment, indicating that these are a consequence of equilibrium and not feedback. Overall, the analytical framework of our equilibrium scenario broadly captures the relevant physics establishing the galaxy gas and metal content in simulations, which suggests that the cycle of baryonic inflows and outflows centrally governs the cosmic evolution of these properties in typical star-forming galaxies.
We perform a suite of cosmological hydrodynamical simulations of disc galaxies, with zoomed-in initial conditions leading to the formation of a halo of mass $M_{rm halo, , DM} simeq 2 cdot 10^{12}$ M$_{odot}$ at redshift $z=0$. These simulations aim at investigating the chemical evolution and the distribution of metals in a disc galaxy, and at quantifying the effect of $(i)$ the assumed IMF, $(ii)$ the adopted stellar yields, and $(iii)$ the impact of binary systems originating SNe Ia on the process of chemical enrichment. We consider either a Kroupa et al. (1993) or a more top-heavy Kroupa (2001) IMF, two sets of stellar yields and different values for the fraction of binary systems suitable to give rise to SNe Ia. We investigate stellar ages, SN rates, stellar and gas metallicity gradients, and stellar $alpha$-enhancement in simulations, and compare predictions with observations. We find that a Kroupa et al. (1993) IMF has to be preferred when modelling late-type galaxies in the local universe. On the other hand, the comparison of stellar metallicity profiles and $alpha$-enhancement trends with observations of Milky Way stars shows a better agreement when a Kroupa (2001) IMF is assumed. Comparing the predicted SN rates and stellar $alpha$-enhancement with observations supports a value for the fraction of binary systems producing SNe Ia of $0.03$, at least for late-type galaxies and for the considered IMFs. Adopted stellar yields are crucial in regulating cooling and star formation, and in determining patterns of chemical enrichment for stars, especially for those located in the galaxy bulge.
One important result from recent large integral field spectrograph (IFS) surveys is that the intrinsic velocity dispersion of galaxies traced by star-forming gas increases with redshift. Massive, rotation-dominated discs are already in place at z~2, but they are dynamically hotter than spiral galaxies in the local Universe. Although several plausible mechanisms for this elevated velocity dispersion (e.g. star formation feedback, elevated gas supply, or more frequent galaxy interactions) have been proposed, the fundamental driver of the velocity dispersion enhancement at high redshift remains unclear. We investigate the origin of this kinematic evolution using a suite of cosmological simulations from the FIRE (Feedback In Realistic Environments) project. Although IFS surveys generally cover a wider range of stellar masses than in these simulations, the simulated galaxies show trends between intrinsic velocity dispersion, SFR, and redshift in agreement with observations. In both the observed and simulated galaxies, intrinsic velocity dispersion is positively correlated with SFR. Intrinsic velocity dispersion increases with redshift out to z~1 and then flattens beyond that. In the FIRE simulations, intrinsic velocity dispersion can vary significantly on timescales of <100 Myr. These variations closely mirror the time evolution of the SFR and gas inflow rate. By cross-correlating pairs of intrinsic velocity dispersion, gas inflow rate, and SFR, we show that increased gas inflow leads to subsequent enhanced star formation, and enhancements in intrinsic velocity dispersion tend to temporally coincide with increases in gas inflow rate and SFR.
We study the nature of rapidly star-forming galaxies at z=2 in cosmological hydrodynamic simulations, and compare their properties to observations of sub-millimetre galaxies (SMGs). We identify simulated SMGs as the most rapidly star-forming systems that match the observed number density of SMGs. In our models, SMGs are massive galaxies sitting at the centres of large potential wells, being fed by smooth infall and gas-rich satellites at rates comparable to their star formation rates (SFR). They are not typically undergoing major mergers that significantly boost their quiescent SFR, but they still often show complex gas morphologies and kinematics. Our simulated SMGs have stellar masses of log M*/Mo~11-11.7, SFRs of ~180-500 Mo/yr, a clustering length of 10 Mpc/h, and solar metallicities. The SFRs are lower than those inferred from far-IR data by a factor of 3, which we suggest may owe to one or more systematic effects in the SFR calibrations. SMGs at z=2 live in ~10^13 Mo halos, and by z=0 they mostly end up as brightest group galaxies in ~10^14 Mo halos. We predict that higher-M* SMGs should have on average lower specific SFRs, less disturbed morphologies, and higher clustering. We also predict that deeper far-IR surveys will smoothly join SMGs onto the massive end of the SFR-M* relationship defined by lower-mass z=2 galaxies. Overall, our simulated rapid star-formers provide as good a match to available SMG data as merger-based scenarios, offering an alternative scenario that emerges naturally from cosmological simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا