ﻻ يوجد ملخص باللغة العربية
We use deep integral field spectroscopy data from the CALIFA survey to study the warm interstellar medium (WIM) of 32 nearby early-type galaxies (ETGs). We propose a tentative subdivision of our sample ETGs into two groups, according to their Ha equivalent width (EW) and Lyman continuum (LyC) photon escape fraction (PLF). Type i ETGs show nearly constant EWs and a PLF~0, suggesting that photoionization by post-AGB stars is the main driver of their faint extranuclear nebular emission. Type ii ETGs are characterized by very low, outwardly increasing EWs, and a PLF as large as ~0.9 in their centers. Such properties point to a low, and inwardly decreasing WIM density and/or volume filling factor. We argue that, because of extensive LyC photon leakage, emission-line luminosities and EWs are reduced in type ii ETG nuclei by at least one order of magnitude. Consequently, the line weakness of these ETGs is by itself no compelling evidence for their containing merely weak (sub-Eddington accreting) active galactic nuclei (AGN). In fact, LyC photon escape, which has heretofore not been considered, may constitute a key element in understanding why many ETGs with prominent signatures of AGN activity in radio continuum and/or X-ray wavelengths show only faint emission lines and weak signatures of AGN activity in their optical spectra. The LyC photon escape, in conjunction with dilution of nuclear EWs by line-of-sight integration through a triaxial stellar host, can systematically impede detection of AGN in gas-poor galaxy spheroids through optical emission-line spectroscopy. We further find that type i and ii ETGs differ little (~0.4 dex) in their mean BPT line ratios, which in both cases are characteristic of LINERs. This potentially hints at a degeneracy of the projected, luminosity-weighted BPT ratios for the specific 3D properties of the WIM in ETGs. (abridged)
The morphological, spectroscopic and kinematical properties of the warm interstellar medium (wim) in early-type galaxies (ETGs) hold key observational constraints to nuclear activity and the buildup history of these massive quiescent systems. High-qu
We present our analysis of the LyC emission and escape fraction of 111 spectroscopically verified galaxies with and without AGN from $2.26<z<4.3$. We extended our ERS sample from Smith et al. (2018; arXiv:1602.01555) with 64 galaxies in the GOODS Nor
Simulations have indicated that most of the escaped Lyman continuum photons escape through a minority of solid angles with near complete transparency, with the remaining majority of the solid angles largely opaque, resulting in a very broad and skewe
Escaping Lyman continuum photons from galaxies likely reionized the intergalactic medium at redshifts $zgtrsim6$. However, the Lyman continuum is not directly observable at these redshifts and secondary indicators of Lyman continuum escape must be us
A large number of high-redshift galaxies have been discovered via their narrow-band Lya line or broad-band continuum colors in recent years. The nature of the escaping process of photons from these early galaxies is crucial to understanding galaxy ev