ترغب بنشر مسار تعليمي؟ اضغط هنا

Gemini Spectroscopy of the Short GRB 130603B Afterglow and Host

113   0   0.0 ( 0 )
 نشر من قبل Antonino Cucchiara
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present early optical photometry and spectroscopy of the afterglow and host galaxy of the bright short-duration gamma-ray burst GRB 130603B discovered by the Swift satellite. Using the Gemini South telescope, our prompt optical spectra reveal a strong trace from the afterglow superimposed on continuum and emission lines from the $z = 0.3568 pm 0.0005$ host galaxy. The combination of a relatively bright optical afterglow (r = 21.52 at $Delta_t $= 8.4hr), together with an observed offset of 0farcs9 from the host nucleus (4.8kpc projected distance at z=0.3568), allow us to extract a relatively clean spectrum dominated by afterglow light . The spatially resolved spectrum allows us to constrain the properties of the explosion site directly, and compare these with the host galaxy nucleus, as well as other short-duration GRB host galaxies. We find that while the host is a relatively luminous ($L approx 0.8 L^{*}_{B}$), star-forming galaxy with solar metallicity, the spectrum of the afterglow exhibits weak CaII absorption features but negligible emission features. The explosion site therefore lacks evidence of recent star formation, consistent with the relatively long delay time distribution expected in a compact binary merger scenario. The star formation rate (both in an absolute sense and normalized to the luminosity) and metallicity of the host are both consistent with the known sample of short-duration GRB hosts and with recent results which suggest GRB130603B emission to be the product of the decay of radioactive species produced during the merging process of a NS-NS binary (kilonova). Ultimately, the discovery of more events similar to GRB130603B and their rapid follow-up from 8-m class telescopes will open new opportunities for our understanding of the final stages of compact-objects binary systems.

قيم البحث

اقرأ أيضاً

Short duration gamma-ray bursts (SGRBs) are thought to be related to the violent merger of compact objects, such as neutron stars or black holes, which makes them promising sources of gravitational waves. The detection of a kilonova-like signature as sociated to the Swift-detected GRB 130603B has suggested that this event is the result of a compact object merger. Our knowledge on SGRB has been, until now, mostly based on the absence of supernova signatures and the analysis of the host galaxies to which they cannot always be securely associated. Further progress has been significantly hampered by the faintness and rapid fading of their optical counterparts (afterglows), which has so far precluded spectroscopy of such events. Afterglow spectroscopy is the key tool to firmly determine the distance at which the burst was produced, crucial to understand its physics, and study its local environment. Here we present the first spectra of a prototypical SGRB afterglow in which both absorption and emission features are clearly detected. Together with multiwavelength photometry we study the host and environment of GRB 130603B. From these spectra we determine the redshift of the burst to be z = 0.3565+/-0.0002, measure rich dynamics both in absorption and emission, and a substantial line of sight extinction of A_V = 0.86+/-0.15 mag. The GRB was located at the edge of a disrupted arm of a moderately star forming galaxy with near-solar metallicity. Unlike for most long GRBs (LGRBs), N_HX / A_V is consistent with the Galactic ratio, indicating that the explosion site differs from those found in LGRBs. The merger is not associated with the most star-forming region of the galaxy; however, it did occur in a dense region, implying a rapid merger or a low natal kick velocity for the compact object binary.
We present the optical discovery and sub-arcsecond optical and X-ray localization of the afterglow of the short GRB 120804A, as well as optical, near-IR, and radio detections of its host galaxy. X-ray observations with Swift/XRT, Chandra, and XMM-New ton to ~19 d reveal a single power law decline. The optical afterglow is faint, and comparison to the X-ray flux indicates that GRB 120804A is dark, with a rest-frame extinction of A_V~2.5 mag (at z~1.3). The intrinsic neutral hydrogen column density inferred from the X-ray spectrum, N_H~2x10^22 cm^-2, is commensurate with the large extinction. The host galaxy exhibits red optical/near-IR colors. Equally important, JVLA observations at 0.9-11 d reveal a constant 5.8 GHz flux density and an optically-thin spectrum, unprecedented for GRB afterglows, but suggestive instead of emission from the host galaxy. The optical/near-IR and radio fluxes are well fit with the scaled spectral energy distribution of the local ultra-luminous infrared galaxy (ULIRG) Arp 220 at z~1.3, with a resulting star formation rate of ~300 Msun/yr. The inferred extinction and small projected offset (2.2+/-1.2 kpc) are also consistent with the ULIRG scenario, as is the presence of a companion galaxy at a separation of about 11 kpc. The limits on radio afterglow emission, in conjunction with the observed X-ray and optical emission, require a circumburst density of ~10^-3 cm^-3 an isotropic-equivalent energy scale of E_gamma,iso ~ E_K,iso ~ 7x10^51 erg, and a jet opening angle of >8 deg. The expected fraction of luminous infrared galaxies in the short GRB host sample is ~0.01-0.3 (for pure stellar mass and star formation weighting, respectively). Thus, the observed fraction of 2 events in about 25 hosts (GRBs 120804A and 100206A), provides additional support to our previous conclusion that short GRBs track both stellar mass and star formation activity.
We present the discovery of short GRB 080905A, its optical afterglow and host galaxy. Initially discovered by Swift, our deep optical observations enabled the identification of a faint optical afterglow, and subsequently a face-on spiral host galaxy underlying the GRB position, with a chance alignment probability of <1%. There is no supernova component present in the afterglow to deep limits. Spectroscopy of the galaxy provides a redshift of z=0.1218, the lowest redshift yet observed for a short GRB. The GRB lies offset from the host galaxy centre by ~18.5 kpc, in the northern spiral arm which exhibits an older stellar population than the southern arm. No emission lines are visible directly under the burst position, implying little ongoing star formation at the burst location. These properties would naturally be explained were the progenitor of GRB 080905A a compact binary merger.
98 - E. Berger , W. Fong , 2013
We present ground-based optical and Hubble Space Telescope optical and near-IR observations of the short-hard GRB130603B at z=0.356, which demonstrate the presence of excess near-IR emission matching the expected brightness and color of an r-process powered transient (a kilonova). The early afterglow fades rapidly with alpha<-2.6 at t~8-32 hr post-burst and has a spectral index of beta=-1.5 (F_nu t^alpha*nu^beta), leading to an expected near-IR brightness at the time of the first HST observation of m(F160W)>29.3 AB mag. Instead, the detected source has m(F160W)=25.8+/-0.2 AB mag, corresponding to a rest-frame absolute magnitude of M(J)=-15.2 mag. The upper limit in the HST optical observations is m(F606W)>27.7 AB mag (3-sigma), indicating an unusually red color of V-H>1.9 mag. Comparing the observed near-IR luminosity to theoretical models of kilonovae produced by ejecta from the merger of an NS-NS or NS-BH binary, we infer an ejecta mass of M_ej~0.03-0.08 Msun for v_ej=0.1-0.3c. The inferred mass matches the expectations from numerical merger simulations. The presence of a kilonova provides the strongest evidence to date that short GRBs are produced by compact object mergers, and provides initial insight on the ejected mass and the primary role that compact object merger may play in the r-process. Equally important, it demonstrates that gravitational wave sources detected by Advanced LIGO/Virgo will be accompanied by optical/near-IR counterparts with unusually red colors, detectable by existing and upcoming large wide-field facilities (e.g., Pan-STARRS, DECam, Subaru, LSST).
Despite a rich phenomenology, gamma-ray bursts (GRBs) are divided into two classes based on their duration and spectral hardness -- the long-soft and the short-hard bursts. The discovery of afterglow emission from long GRBs was a watershed event, pin pointing their origin to star forming galaxies, and hence the death of massive stars, and indicating an energy release of about 10^51 erg. While theoretical arguments suggest that short GRBs are produced in the coalescence of binary compact objects (neutron stars or black holes), the progenitors, energetics, and environments of these events remain elusive despite recent localizations. Here we report the discovery of the first radio afterglow from a short burst, GRB 050724, which unambiguously associates it with an elliptical galaxy at a redshift, z=0.257. We show that the burst is powered by the same relativistic fireball mechanism as long GRBs, with the ejecta possibly collimated in jets, but that the total energy release is 10-1000 times smaller. More importantly, the nature of the host galaxy demonstrates that short GRBs arise from an old (>1 Gyr) stellar population, strengthening earlier suggestions, and providing support for coalescing compact object binaries as the progenitors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا