ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for Helical Nuclear Spin Order in GaAs Quantum Wires

117   0   0.0 ( 0 )
 نشر من قبل Dominik Zumb\\\"uhl
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present transport measurements of cleaved edge overgrowth GaAs quantum wires. The conductance of the first mode reaches 2 e^2/h at high temperatures T > 10 K, as expected. As T is lowered, the conductance is gradually reduced to 1 e^2/h, becoming T-independent at T < 0.1 K, while the device cools far below 0.1 K. This behavior is seen in several wires, is independent of density, and not altered by moderate magnetic fields B. The conductance reduction by a factor of two suggests lifting of the electron spin degeneracy in absence of B. Our results are consistent with theoretical predictions for helical nuclear magnetism in the Luttinger liquid regime.


قيم البحث

اقرأ أيضاً

We propose a new method for dynamic nuclear polarisation in a quasi one-dimensional quantum wire utilising the spin-orbit interaction, the hyperfine interaction, and a finite source-drain potential difference. In contrast with current methods, our sc heme does not rely on external magnetic or optical sources which makes independent control of closely placed devices much more feasible. Using this method, a significant polarisation of a few per cent is possible in currently available InAs wires which may be detected by conductance measurements. This may prove useful for nuclear-magnetic-resonance studies in nanoscale systems as well as in spin-based devices where external magnetic and optical sources will not be suitable.
When a quantum wire is weakly confined, a conductance plateau appears at e^2/h with decreasing carrier density in zero magnetic field accompanied by a gradual suppression of the 2e^2/h plateau. Applying an in-plane magnetic field B|| does not alter t he value of this quantization; however, the e^2/h plateau weakens with increasing B|| up to 9 T, and then strengthens on further increasing B||, which also restores the 2e^2/h plateau. Our results are consistent with spin-incoherent transport in a one-dimensional wire.
103 - M. Moreno , C. J. B. Ford , Y. Jin 2015
One-dimensional electronic fluids are peculiar conducting systems, where the fundamental role of interactions leads to exotic, emergent phenomena, such as spin-charge (spinon-holon) separation. The distinct low-energy properties of these 1D metals ar e successfully described within the theory of linear Luttinger liquids, but the challenging task of describing their high-energy nonlinear properties has long remained elusive. Recently, novel theoretical approaches accounting for nonlinearity have been developed, yet the rich phenomenology that they predict remains barely explored experimentally. Here, we probe the nonlinear spectral characteristics of short GaAs quantum wires by tunnelling spectroscopy, using an advanced device consisting of 6000 wires. We find evidence for the existence of an inverted (spinon) shadow band in the main region of the particle sector, one of the central predictions of the new nonlinear theories. A (holon) band with reduced effective mass is clearly visible in the particle sector at high energies.
The central-spin problem, in which an electron spin interacts with a nuclear spin bath, is a widely studied model of quantum decoherence. Dynamic nuclear polarization (DNP) occurs in central spin systems when electronic angular momentum is transferre d to nuclear spins and is exploited in spin-based quantum information processing for coherent electron and nuclear spin control. However, the mechanisms limiting DNP remain only partially understood. Here, we show that spin-orbit coupling quenches DNP in a GaAs double quantum dot, even though spin-orbit coupling in GaAs is weak. Using Landau-Zener sweeps, we measure the dependence of the electron spin-flip probability on the strength and direction of in-plane magnetic field, allowing us to distinguish effects of the spin-orbit and hyperfine interactions. To confirm our interpretation, we measure high-bandwidth correlations in the electron spin-flip probability and attain results consistent with a significant spin-orbit contribution. We observe that DNP is quenched when the spin-orbit component exceeds the hyperfine, in agreement with a theoretical model. Our results shed new light on the surprising competition between the spin-orbit and hyperfine interactions in central-spin systems.
We study the effect of bias voltage on the nuclear spin polarization of a ballistic wire, which contains electrons and nuclei interacting via hyperfine interaction. In equilibrium, the localized nuclear spins are helically polarized due to the electr on-mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. Focusing here on non-equilibrium, we find that an applied bias voltage induces a uniform polarization, from both helically polarized and unpolarized spins available for spin flips. Once a macroscopic uniform polarization in the nuclei is established, the nuclear spin helix rotates with frequency proportional to the uniform polarization. The uniform nuclear spin polarization monotonically increases as a function of both voltage and temperature, reflecting a thermal activation behavior. Our predictions offer specific ways to test experimentally the presence of a nuclear spin helix polarization in semiconducting quantum wires.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا