ترغب بنشر مسار تعليمي؟ اضغط هنا

The HARPS search for southern extra-solar planets. XXXIV. A planetary system around the nearby M dwarf GJ163, with a super-Earth possibly in the habitable zone

177   0   0.0 ( 0 )
 نشر من قبل Xavier Bonfils
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The meter-per-second precision achieved by today velocimeters enables the search for 1-10 M_Earth planets in the habitable zone of cool stars. This paper reports on the detection of 3 planets orbiting GJ163 (HIP19394), a M3 dwarf monitored by our ESO/HARPS search for planets. We made use of the HARPS spectrograph to collect 150 radial velocities of GJ163 over a period of 8 years. We searched the RV time series for coherent signals and found 5 distinct periodic variabilities. We investigated the stellar activity and casted doubts on the planetary interpretation for 2 signals. Before more data can be acquired we concluded that at least 3 planets are orbiting GJ163. They have orbital periods of P_b=8.632+-0.002, P_c=25.63+-0.03 and P_d=604+-8 days and minimum masses msini = 10.6+-0.6, 6.8+-0.9, and 29+-3 M_Earth, respectively. We hold our interpretations for the 2 additional signals with periods P_(e)=19.4 and P_(f)=108 days. The inner pair presents an orbital period ratio of 2.97, but a dynamical analysis of the system shows that it lays outside the 3:1 mean motion resonance. GJ163c, in particular, is a super-Earth with an equilibrium temperature of T_eq = (302+-10) (1-A)^(1/4) K and may lie in the so called habitable zone for albedo values (A=0.34-0.89) moderately higher than that of Earth (A_Earth=0.2-0.3).



قيم البحث

اقرأ أيضاً

We re-analyze 4 years of HARPS spectra of the nearby M1.5 dwarf GJ 667C available through the ESO public archive. The new radial velocity (RV) measurements were obtained using a new data analysis technique that derives the Doppler measurement and oth er instrumental effects using a least-squares approach. Combining these new 143 measurements with 41 additional RVs from the Magellan/PFS and Keck/HIRES spectrometers, reveals 3 additional signals beyond the previously reported 7.2-day candidate, with periods of 28 days, 75 days, and a secular trend consistent with the presence of a gas giant (Period sim 10 years). The 28-day signal implies a planet candidate with a minimum mass of 4.5 Mearth orbiting well within the canonical definition of the stars liquid water habitable zone, this is, the region around the star at which an Earth-like planet could sustain liquid water on its surface. Still, the ultimate water supporting capability of this candidate depends on properties that are unknown such as its albedo, atmospheric composition and interior dynamics. The 75-day signal is less certain, being significantly affected by aliasing interactions among a potential 91-day signal, and the likely rotation period of the star at 105 days detected in two activity indices. GJ 667C is the common proper motion companion to the GJ 667AB binary, which is metal poor compared to the Sun. The presence of a super-Earth in the habitable zone of a metal poor M dwarf in a triple star system, supports the evidence that such worlds should be ubiquitous in the Galaxy.
169 - X. Bonfils , X. Delfosse , S. Udry 2011
(Abridged) Searching for planets around stars with different masses probes the outcome of planetary formation for different initial conditions. This drives observations of a sample of 102 southern nearby M dwarfs, using a fraction of our guaranteed t ime on the ESO/HARPS spectrograph (Feb. 11th, 2003 to Apr. 1st 2009). This paper makes available the samples time series, presents their precision and variability. We apply systematic searches and diagnostics to discriminate whether the observed Doppler shifts are caused by stellar surface inhomogeneities or by the radial pull of orbiting planets. We recover the planetary signals corresponding to 9 planets already announced by our group (Gl176b, Gl581b, c, d & e, Gl674b, Gl433b, Gl 667Cb and c). We present radial velocities that confirm GJ 849 hosts a Jupiter-mass planet, plus a long-term radial-velocity variation. We also present RVs that precise the planetary mass and period of Gl 832b. We detect long-term RV changes for Gl 367, Gl 680 and Gl 880 betraying yet unknown long-period companions. We identify candidate signals in the radial-velocity time series and demonstrate they are most probably caused by stellar surface inhomogeneities. Finally, we derive a first estimate of the occurrence of M-dwarf planets as a function of their minimum mass and orbital period. In particular, we find that giant planets (m sin i = 100-1,000 Mearth) have a low frequency (e.g. f<1% for P=1-10 d and f=0.02^{+0.03}_{-0.01} for P=10-100 d), whereas super-Earths (m sin i = 1-10 Mearth) are likely very abundant (f=0.36^{+0.25}_{-0.10} for P=1-10 d and f=0.35^{+0.45}_{-0.11} for P=10-100 d). We also obtained eta_earth=0.41^{+0.54}_{-0.13}, the frequency of habitable planets orbiting M dwarfs (1<m sin i<10 Mearth). For the first time, eta_earth is a direct measure and not a number extrapolated from the statistic of more massive and/or shorter-period planets.
We report the discovery of four super-Earth planets around HD 215152, with orbital periods of 5.76, 7.28, 10.86, and 25.2 d, and minimum masses of 1.8, 1.7, 2.8, and 2.9 M_Earth respectively. This discovery is based on 373 high-quality radial velocit y measurements taken by HARPS over 13 years. Given the low masses of the planets, the signal-to-noise ratio is not sufficient to constrain the planet eccentricities. However, a preliminary dynamical analysis suggests that eccentricities should be typically lower than about 0.03 for the system to remain stable. With two pairs of planets with a period ratio lower than 1.5, with short orbital periods, low masses, and low eccentricities, HD 215152 is similar to the very compact multi-planet systems found by Kepler, which is very rare in radial-velocity surveys. This discovery proves that these systems can be reached with the radial-velocity technique, but characterizing them requires a huge amount of observations.
317 - M. Mayor , S. Udry , C. Lovis 2008
This paper reports on the detection of a planetary system with three Super-Earths orbiting HD40307. HD40307 is a K2V metal-deficient star at a distance of only 13 parsec, part of the HARPS GTO high-precision planet-search programme. The three planets on circular orbits have very low minimum masses of respectively 4.2, 6.9 and 9.2 Earth masses and periods of 4.3, 9.6 and 20.5 days. The planet with the shortest period is the lightest planet detected to-date orbiting a main sequence star. The detection of the correspondingly low amplitudes of the induced radial-velocity variations is completely secured by the 135 very high-quality HARPS observations illustrated by the radial-velocity residuals around the 3-Keplerian solution of only 0.85 m/s. Activity and bisector indicators exclude any significant perturbations of stellar intrinsic origin, which supports the planetary interpretation. Contrary to most planet-host stars, HD40307 has a marked sub-solar metallicity ([Fe/H]=-0.31), further supporting the already raised possibility that the occurrence of very light planets might show a different dependence on host stars metallicity compared to the population of gas giant planets. In addition to the 3 planets close to the central star, a small drift of the radial-velocity residuals reveals the presence of another companion in the system the nature of which is still unknown.
134 - G. Lo Curto , M. Mayor , W. Benz 2013
The vast diversity of planetary systems detected to date is defying our capability of understanding their formation and evolution. Well-defined volume-limited surveys are the best tool at our disposal to tackle the problem, via the acquisition of rob ust statistics of the orbital elements. We are using the HARPS spectrograph to conduct our survey of ~850 nearby solar-type stars, and in the course of the past nine years we have monitored the radial velocity of HD103774, HD109271, and BD-061339. In this work we present the detection of five planets orbiting these stars, with m*sin(i) between 0.6 and 7 Neptune masses, four of which are in two multiple systems, comprising one super-Earth and one planet within the habitable zone of a late-type dwarf. Although for strategic reasons we chose efficiency over precision in this survey, we have the capability to detect planets down to the Neptune and super-Earth mass range, as well as multiple systems, provided that enough data points are made available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا