ﻻ يوجد ملخص باللغة العربية
We compute the electromagnetic properties of Xi_cc baryons in 2+1 flavor Lattice QCD. By measuring the electric charge and magnetic form factors of Xi_cc baryons, we extract the magnetic moments, charge and magnetic radii as well as the Xi_cc Xi_cc rho coupling constant, which provide important information to understand the size, shape and couplings of the doubly charmed baryons. We find that the two heavy charm quarks drive the charge radii and the magnetic moment of Xi_cc to smaller values as compared to those of, e.g., the proton.
We present the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 16^3 X 128, with inverse spacing in temporal direction 1/a_t = 5.67(4)
As a continuation of our recent work on the electromagnetic properties of the doubly charmed $Xi_{cc}$ baryon, we compute the charge radii and the magnetic moments of the singly charmed $Sigma_c$, $Omega_c$ and the doubly charmed $Omega_{cc}$ baryons
We evaluate the spin-$3/2 to$ spin-$1/2$ electromagnetic transitions of the doubly charmed baryons on 2+1 flavor, $32^3 times 64$ PACS-CS lattices with a pion mass of $156(9)$ MeV/c$^2$. A relativistic heavy quark action is employed to minimize the a
We present the energy spectra of the low lying doubly-charmed baryons using lattice quantum chromodynamics. We precisely predict the ground state mass of the charmed-strange Omega(cc) (1/2+) baryon to be 3712(11)(12) MeV which could well be the next
We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their con