ترغب بنشر مسار تعليمي؟ اضغط هنا

Transmission of High-Power Electron Beams Through Small Apertures

248   0   0.0 ( 0 )
 نشر من قبل Christoph Tschalaer
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Tschalaer




اسأل ChatGPT حول البحث

Tests were performed to pass a 100 MeV, 430 kWatt c.w. electron beam from the energy-recovery linac at the Jefferson Laboratorys FEL facility through a set of small apertures in a 127 mm long aluminum block. Beam transmission losses of 3 p.p.m. through a 2 mm diameter aperture were maintained during a 7 hour continuous run.



قيم البحث

اقرأ أيضاً

High power, relativistic electron beams from energy recovery linacs have great potential to realize new experimental paradigms for pioneering innovation in fundamental and applied research. A major design consideration for this new generation of expe rimental capabilities is the understanding of the halo associated with these bright, intense beams. In this Letter, we report on measurements performed using the 100 MeV, 430 kWatt CW electron beam from the energy recovery linac at the Jefferson Laboratorys Free Electron Laser facility as it traversed a set of small apertures in a 127 mm long aluminum block. Thermal measurements of the block together with neutron measurements near the beam-target interaction point yielded a consistent understanding of the beam losses. These were determined to be 3 ppm through a 2 mm diameter aperture and were maintained during a 7 hour continuous run.
137 - R. Alarcon 2013
We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.
Terahertz (THz)-driven acceleration has recently emerged as a new route for delivering ultrashort bright electron beams efficiently, reliably, and in a compact setup. Many THz-driven acceleration related working schemes and key technologies have been successfully demonstrated and are continuously being improved to new limits. However, the achieved acceleration gradient and energy gain remain low, and the potential physics and technical challenges in the high field and high energy regime are still under-explored. Here we report a record energy gain of 170 keV in a single-stage configuration, and demonstrate the first cascaded acceleration of a relativistic beam with a 204 keV energy gain in a two-stages setup. Whole-bunch acceleration is accomplished with an average accelerating gradient of 85 MV/m and a peak THz electric field of 1.1 GV/m. This proof-of-principle result is a crucial advance in THz-driven acceleration with a major impact on future electron sources and related scientific discoveries.
CW photoinjectors operating at high accelerating gradients promise to revolutionize many areas of science and applications. They can establish the basis for a new generation of monochromatic X-ray free electron lasers, high brightness hadron beams, o r a new generation of microchip production. In this letter we report on the record-performing superconducting RF electron gun with $textrm{CsK}_{2}textrm{Sb}$ photocathode. The gun is generating high charge electron bunches (up to 10 nC/bunch) and low transverse emittances, while operating for months with a single photocathode. This achievement opens a new era in generating high-power beams with a very high average brightness.
324 - S. Antipov , C. Jing , M. Fedurin 2011
We report observation of a strong wakefield induced energy modulation in an energy-chirped electron bunch passing through a dielectric-lined waveguide. This modulation can be effectively converted into a spatial modulation forming micro-bunches with a periodicity of 0.5 - 1 picosecond, hence capable of driving coherent THz radiation. The experimental results agree well with theoretical predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا