ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanical resonators for storage and transfer of electrical and optical quantum states

104   0   0.0 ( 0 )
 نشر من قبل Murray Holland
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study an optomechanical system in which a microwave field and an optical field are coupled to a common mechanical resonator. We explore methods that use these mechanical resonators to store quantum mechanical states and to transduce states between the electromagnetic resonators from the perspective of the effect of mechanical decoherence. Besides being of fundamental interest, this coherent quantum state transfer could have important practical implications in the field of quantum information science, as it potentially allows one to overcome intrinsic limitations of both microwave and optical platforms. We discuss several state transfer protocols and study their transfer fidelity using a fully quantum mechanical model that utilizes quantum state-diffusion techniques. This work demonstrates that mechanical decoherence should not be an insurmountable obstacle in realizing high fidelity storage and transduction.

قيم البحث

اقرأ أيضاً

A challenge of modern physics is to investigate the quantum behavior of a bulk material object, for instance a mechanical oscillator. We have earlier demonstrated that by coupling a mechanical oscillator to the energy levels of embedded rare-earth io n dopants, it is possible to prepare such a resonator in a low phonon number state. Here, we describe how to extend this protocol in order to prepare momentum- and position squeezed states, and we analyze how the obtainable degree of squeezing depends on the initial conditions and on the coupling of the oscillator to its thermal environment.
99 - Aurelien Dantan 2004
We study how to efficiently manipulate and store quantum information between optical fields and atomic ensembles. We show how various non-dissipative transfer schemes can be used to transfer and store quantum states such as squeezed vacuum states or entangled states into the long-lived ground state spins of atomic ensembles.
Mechanical resonators represent one of the most promising candidates to mediate the interaction between different quantum technologies, bridging the gap between efficient quantum computation and long-distance quantum communication. In this letter, we introduce a novel interferometric scheme where the interaction of a mechanical resonator with input/output quantum pulses is controlled by an independent classical drive. We design protocols for state teleportation and direct quantum state transfer, between distant mechanical resonators. The proposed device, feasible with state-of-the-art technology, can serve as building block for the implementation of long-distance quantum networks of mechanical resonators.
We experimentally demonstrate storage and on-demand release of phase-sensitive, photon-number superposition states of the form $alpha |0rangle + beta e^{itheta} |1rangle$ for an optical quantized oscillator mode. For this purpose, we introduce a phas e-probing mechanism to a storage system composed of two concatenated optical cavities, which was previously employed for storage of phase-insensitive single-photon states [Phys. Rev. X 3, 041028 (2013)]. This is the first demonstration of all-optically storing highly nonclassical and phase-sensitive quantum states of light. The strong nonclassicality of the states after storage becomes manifest as a negative region in the corresponding Wigner function shifted away from the origin in phase space. This negativity is otherwise, without the phase information of the memory system, unobtainable. While our scheme includes the possibility of optical storage, on-demand release and synchronization of arbitrary single-rail qubit states, it is not limited to such states. In fact, our technique is extendible to more general phase-sensitive states such as multiphoton superposition or entangled states, and thus it represents a significant step toward advanced optical quantum information processing, where highly non-classical states are utilized as resources.
The successes of superconducting quantum circuits at local manipulation of quantum information and photonics technology at long-distance transmission of the same have spurred interest in the development of quantum transducers for efficient, low-noise , and bidirectional frequency conversion of photons between the microwave and optical domains. We propose to realize such functionality through the coupling of electrical, piezoelectric, and optomechanical resonators. The coupling of the mechanical subsystems enables formation of a resonant mechanical supermode that provides a mechanically-mediated, efficient single interface to both the microwave and optical domains. The conversion process is analyzed by applying an equivalent circuit model that relates device-level parameters to overall figures of merit for conversion efficiency $eta$ and added noise $N$. These can be further enhanced by proper impedance matching of the transducer to an input microwave transmission line. The performance of potential transducers is assessed through finite-element simulations, with a focus on geometries in GaAs, followed by considerations of the AlN, LiNbO$_3$, and AlN-on-Si platforms. We present strategies for maximizing $eta$ and minimizing $N$, and find that simultaneously achieving $eta>50~%$ and $N < 0.5$ should be possible with current technology. We find that the use of a mechanical supermode for mediating transduction is a key enabler for high-efficiency operation, particularly when paired with an appropriate microwave impedance matching network. Our comprehensive analysis of the full transduction chain enables us to outline a development path for the realization of high-performance quantum transducers that will constitute a valuable resource for quantum information science.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا