ترغب بنشر مسار تعليمي؟ اضغط هنا

DR 21(OH): a highly fragmented, magnetized, turbulent dense core

116   0   0.0 ( 0 )
 نشر من قبل Josep Miquel Girart
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high-angular-resolution observations of the massive star forming core DR21(OH) at 880 mum using the Submillimeter Array (SMA). The dense core exhibits an overall velocity gradient in a Keplerian-like pattern, which breaks at the center of the core where SMA 6 and SMA 7 are located. The dust polarization shows a complex magnetic field, compatible with a toroidal configuration. This is in contrast with the large, parsec-scale filament that surrounds the core, where there is a smooth magnetic field. The total magnetic field strengths in the filament and in the core are 0.9 and 2.1 mG, respectively. We found evidence of magnetic field diffusion at the core scales, far beyond the expected value for ambipolar diffusion. It is possible that the diffusion arises from fast magnetic reconnection in the presence of turbulence. The dynamics of the DR 21(OH) core appear to be controlled energetically in equal parts by the magnetic field, magneto-hydrodynamic (MHD) turbulence and the angular momentum. The effect of the angular momentum (this is a fast rotating core) is probably causing the observed toroidal field configuration. Yet, gravitation overwhelms all the forces, making this a clear supercritical core with a mass-to-flux ratio of ~6 times the critical value. However, simulations show that this is not enough for the high level of fragmentation observed at 1000 AU scales. Thus, rotation and outflow feedback is probably the main cause of the observed fragmentation.



قيم البحث

اقرأ أيضاً

Measuring interstellar magnetic fields is extremely important for understanding their role in different evolutionary stages of interstellar clouds and of star formation. However, detecting the weak field is observationally challenging. We present mea surements of the Zeeman effect in the 1665 and 1667~MHz (18~cm) lines of the hydroxyl radical (OH) lines toward the dense photodissociation region (PDR) associated with the compact H{sc ii} region DR~21~(Main). From the OH 18~cm absorption, observed with the Karl G. Jansky Very Large Array, we find that the line of sight magnetic field in this region is $sim 0.13$~mG. The same transitions in maser emission toward the neighboring DR~21(OH) and W~75S-FR1 regions also exhibit the Zeeman splitting. Along with the OH data, we use [C{sc ii}] 158 $mu$m line and hydrogen radio recombination line data to constrain the physical conditions and the kinematics of the region. We find the OH column density to be $sim 3.6times10^{16}(T_{rm ex}/25~{rm K})~{rm cm}^{-2}$, and that the 1665 and 1667 MHz absorption lines are originating from the gas where OH and C$^+$ are co-existing in the PDR. Under reasonable assumptions, we find the measured magnetic field strength for the PDR to be lower than the value expected from the commonly discussed density--magnetic field relation while the field strength values estimated from the maser emission are roughly consistent with the same. Finally, we compare the magnetic field energy density with the overall energetics of DR~21s PDR and find that, in its current evolutionary stage, the magnetic field is not dynamically important.
117 - Oskari Miettinen 2013
We present APEX observations of C17O(2-1), N2H+(3-2), and N2D+(3-2) towards the subfragments inside the prestellar core SMM 6 in Orion B9. We combined these spectral line data with our previous SABOCA 350-{mu}m dust continuum map of the source. The s ubfragments are characterised by subsonic internal non-thermal motions ({sigma}NT~0.5cs), and most of them appear to be gravitationally bound. The dispersion of the N2H+ velocity centroids among the condensations is very low (0.02 km/s). The CO depletion factors we derive, fD=0.8+/-0.4 - 3.6+/-1.5, do not suggest any significant CO freeze-out but this may be due to the canonical CO abundance we adopt. The fractional abundances of N2H+ and N2D+ with respect to H2 are found to be ~0.9-2.3x10^-9 and ~4.9-9.9x10^-10, respectively. The deuterium fractionation of N2H+, or the N2D+/N2H+ column density ratio, lies in the range 0.30+/-0.07 - 0.43+/-0.09. The detected substructure inside SMM 6 is likely the result of cylindrical Jeans-type gravitational fragmentation. We estimate the timescale for this fragmentation to be ~1.8x10^5 yr. The condensations are unlikely to be able to interact with one another and coalesce before local gravitational collapse ensues. Moreover, significant mass growth of the condensations via competitive-like accretion from the parent core seems unfeasible. The high level of molecular deuteration in the condensations suggests that gas-phase CO should be strongly depleted. It also points towards an advanced stage of chemical evolution. The subfragments of SMM 6 might therefore be near the onset of gravitational collapse, but whether they can form protostellar or substellar objects (brown dwarfs) depends on the local star formation efficiency and remains to be clarified.
We report ALMA Cycle 3 observations in CO isotopes toward a dense core, MC27/L1521F in Taurus, which is considered to be at an early stage of multiple star formation in a turbulent environment. Although most of the high-density parts of this core are considered to be as cold as $sim$10 K, high-angular resolution ($sim$20 au) observations in $^{12}$CO ($J$ = 3--2) revealed complex warm ($>$15--60 K) filamentary/clumpy structures with the sizes from a few tens of au to $sim$1,000 au. The interferometric observations of $^{13}$CO and C$^{18}$O show that the densest part with arc-like morphologies associated with the previously identified protostar and condensations are slightly redshifted from the systemic velocity of the core. We suggest that the warm CO clouds may be consequences of shock heating induced by interactions among the different density/velocity components that originated from the turbulent motions in the core. However, such a small-scale and fast turbulent motion does not correspond to a simple extension of the line-width-size relation (i.e., Larson{}s law), and thus the actual origin remains to be studied. The high-angular resolution CO observations are expected to be essential in detecting small-scale turbulent motions in dense cores and to investigate protostar formation therein.
We have studied the young low-mass pre-main sequence (PMS) stellar population associated with the massive star-forming region DR 21 by using archival X-ray Chandra observations and by complementing them with existing optical and IR surveys. The Chand ra observations have revealed for the first time a new highly extincted population of PMS low-mass stars previously missed in observations at other wavelengths. The X-ray population exhibits three main stellar density peaks, coincident with the massive star-forming regions, being the DR 21 core the main peak. The cross-correlated X-ray/IR sample exhibits a radial Spokes-like stellar filamentary structure that extends from the DR 21 core towards the northeast. The near IR data reveal a centrally peaked structure for the extinction, which exhibits its maximum in the DR 21 core and gradually decreases with the distance to the N-S cloud axis and to the cluster center. We find evidence of a global mass segregation in the full low-mass stellar cluster, and of an stellar age segregation, with the youngest stars still embedded in the N-S cloud, and more evolved stars more spatially distributed. The results are consistent with the scenario where an elongated overall potential well created by the full low-mass stellar cluster funnels gas through filaments feeding stellar formation. Besides the full gravitational well, smaller-scale local potential wells created by dense stellar sub-clusters of low-mass stars are privileged in the competition for the gas of the common reservoir, allowing the formation of massive stars. We also discuss the possibility that a stellar collision in the very dense stellar cluster revealed by Chandra in the DR 21 core is the origin of the large-scale and highly-energetic outflow arising from this region.
Massive stars, multiple stellar systems and clusters are born from the gravitational collapse of massive dense gaseous clumps, and the way these systems form strongly depends on how the parent clump fragments into cores during collapse. Numerical sim ulations show that magnetic fields may be the key ingredient in regulating fragmentation. Here we present ALMA observations at ~0.25 resolution of the thermal dust continuum emission at ~278 GHz towards a turbulent, dense, and massive clump, IRAS 16061-5048c1, in a very early evolutionary stage. The ALMA image shows that the clump has fragmented into many cores along a filamentary structure. We find that the number, the total mass and the spatial distribution of the fragments are consistent with fragmentation dominated by a strong magnetic field. Our observations support the theoretical prediction that the magnetic field plays a dominant role in the fragmentation process of massive turbulent clump.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا