ﻻ يوجد ملخص باللغة العربية
We study the heat transport along an edge state of a two-dimensional electron gas in the quantum Hall regime, in contact to two reservoirs at different temperatures. We consider two exactly solvable models for the edge state coupled to the reservoirs. The first one corresponds to filling $ u=1$ and tunneling coupling to the reservoirs. The second one corresponds to integer or fractional filling of the sequence $ u=1/m$ (with $m$ odd), and capacitive coupling to the reservoirs. In both cases we solve the problem by means of non-equilibrium Green function formalism. We show that heat propagates chirally along the edge in the two setups. We identify two temperature regimes, defined by $Delta$, the mean level spacing of the edge. At low temperatures, $T< Delta$, finite size effects play an important role in heat transport, for both types of contacts. The nature of the contacts manifest themselves in different power laws for the thermal conductance as a function of the temperature. For capacitive couplings a highly non-universal behavior takes place, through a prefactor that depends on the length of the edge as well as on the coupling strengths and the filling fraction. For larger temperatures, $T>Delta$, finite-size effects become irrelevant, but the heat transport strongly depends on the strength of the edge-reservoir interactions, in both cases. The thermal conductance for tunneling coupling grows linearly with $T$, whereas for the capacitive case it saturates to a value that depends on the coupling strengths and the filling factors of the edge and the contacts.
Motivated by recent experiments we consider transport across an interacting magnetic impurity coupled to the Majorana zero mode (MZM) observed at the boundary of a topological superconductor (SC). In the presence of a finite tunneling amplitude we ob
Current statistics of an antidot in the fractional quantum Hall regime is studied for Laughlins series. The chiral Luttinger liquid picture of edge states with a renormalized interaction exponent $g$ is adopted. Several peculiar features are found in
Specific heat has had an important role in the study of superfluidity and superconductivity, and could provide important information about the fractional quantum Hall effect as well. However, traditional measurements of the specific heat of a two-dim
We investigate minimal excitation states for heat transport into a fractional quantum Hall system driven out of equilibrium by means of time-periodic voltage pulses. A quantum point contact allows for tunneling of fractional quasi-particles between o
We consider the trial wavefunctions for the Fractional Quantum Hall Effect (FQHE) that are given by conformal blocks, and construct their associated edge excited states in full generality. The inner products between these edge states are computed in