ترغب بنشر مسار تعليمي؟ اضغط هنا

Current-Voltage Characteristics and non-Gaussian fluctuations in two different protein light receptors

110   0   0.0 ( 0 )
 نشر من قبل Eleonora Alfinito Dr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate conductance and conductance fluctuations of two transmembrane proteins, bacteriorhodopsin and proteorhodopsin, belonging to the family of protein light receptors. These proteins are widely diffused in aqueous environments, are sensitive to visible light and are promising biomaterials for the realization of novel photodevices. The conductance exhibits a rapid increase at increasing applied voltages, over a threshold value. Around the threshold value the variance of conductance fluctuations shows a dramatic jump of about 5 orders of magnitude: conductance and variance behaviours trace a second order phase transition. Furthermore, the conductance fluctuations evidence a non-Gaussian behaviour with a probability density function (PDF) which follows a generalized Gumbel distribution, typical of extreme-value statistics. The theoretical model is validated on existing current-voltage measurements and the interpretation of the PDF of conductance fluctuations is proven to be in line with the microscopic mechanisms responsible of charge transport.



قيم البحث

اقرأ أيضاً

We employ a functional renormalization group to study interfaces in the presence of a pinning potential in $d=4-epsilon$ dimensions. In contrast to a previous approach [D.S. Fisher, Phys. Rev. Lett. {bf 56}, 1964 (1986)] we use a soft-cutoff scheme. With the method developed here we confirm the value of the roughness exponent $zeta approx 0.2083 epsilon$ in order $epsilon$. Going beyond previous work, we demonstrate that this exponent is universal. In addition, we analyze the generation of higher cumulants in the disorder distribution and the role of temperature as a dangerously irrelevant variable.
Water plays a fundamental role in protein stability. However, the effect of the properties of water on the behaviour of proteins is only partially understood. Several theories have been proposed to give insight into the mechanisms of cold and pressur e denaturation, or the limits of temperature and pressure above which no protein has a stable, functional state, or how unfolding and aggregation are related. Here we review our results based on a theoretical approach that can rationalise the water contribution to protein solutions free energy. We show, using Monte Carlo simulations, how we can rationalise experimental data with our recent results. We discuss how our findings can help develop new strategies for the design of novel synthetic biopolymers or possible approaches for mitigating neurodegenerative pathologies.
228 - Govind Paneru , Jin Tae Park , 2021
Living cells are known to generate non-Gaussian active fluctuations that are significantly larger than thermal fluctuations owing to various metabolic activities. Understanding the effect of active fluctuations on various physicochemical processes, s uch as the transport of molecular motors, is a fundamental problem in nonequilibrium physics. Therefore, we experimentally and numerically study an active Brownian ratchet comprising a colloidal particle in an optically generated asymmetric periodic potential driven by non-Gaussian noise with finite-amplitude active bursts, each arriving at random and decaying exponentially. We determine that the particle velocity is maximum for relatively sparse bursts with finite correlation time and non-Gaussian distribution. These occasional kicks are more efficient for transport and diffusion enhancement of the particle, compared to the incessant kicks of active Ornstein-Uhlenbeck noise. The ratchet reverses its transport direction only when the noise correlation time is shorter than the thermal relaxation time, suggesting possible application in nanoparticle separation.
Biological activity gives rise to non-equilibrium fluctuations in the cytoplasm of cells; however, there are few methods to directly measure these fluctuations. Using a reconstituted actin cytoskeleton, we show that the bending dynamics of embedded m icrotubules can be used to probe local stress fluctuations. We add myosin motors that drive the network out of equilibrium, resulting in an increased amplitude and modified time-dependence of microtubule bending fluctuations. We show that this behavior results from step-like forces on the order of 10 pN driven by collective motor dynamics.
We report measurements of transfer functions and flux shifts of 20 on-chip high T$_C$ DC SQUIDs half of which were made purposely geometrically asymmetric. All of these SQUIDs were fabricated using standard high T$_C$ thin film technology and they we re single layer ones, having 140 nm thickness of YBa$_2$Cu$_3$O$_{7-x}$ film deposited by laser ablation onto MgO bicrystal substrates with 24$^0$ misorientation angle. For every SQUID the parameters of its intrinsic asymmetry, i. e., the density of critical current and resistivity of every junction, were measured directly and independently. We showed that the main reason for the on-chip spreading of SQUIDs voltage-current and voltage-flux characteristics was the intrinsic asymmetry. We found that for SQUIDs with a relative large inductance ($L>120 $ pH) both the voltage modulation and the transfer function were not very sensitive to the junctions asymmetry, whereas SQUIDs with smaller inductance ($Lsimeq 65-75 $ pH) were more sensitive. The results obtained in the paper are important for the implementation in the sensitive instruments based on high T$_C$ SQUID arrays and gratings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا