ﻻ يوجد ملخص باللغة العربية
The multiple time scale dynamics induced by radiation pressure and photothermal effects in a high-finesse optomechanical resonator is experimentally studied. At difference with two-dimensional slow-fast systems, the transition from the quasiharmonic to the relaxational regime occurs via chaotic canard explosions, where large-amplitude relaxation spikes are separated by an irregular number of subthreshold oscillations. We also show that this regime coexists with other periodic attractors, on which the trajectories evolve on a substantially faster time scale. The experimental results are reproduced and analyzed by means of a detailed physical model of our system.
We study the nonreciprocal transmission and the fast-slow light effects in a cavity optomechanical system, in which the cavity supports a clockwise and a counter-clockwise circulating optical modes, both the two modes are driven simultaneously by a s
Nanomechanical resonators have demonstrated great potential for use as versatile tools in a number of emerging quantum technologies. For such applications, the performance of these systems is restricted by the decoherence of their fragile quantum sta
We study the problem of preservation of canard connections for time discretized fast-slow systems with canard fold points. In order to ensure such preservation, certain favorable structure preserving properties of the discretization scheme are requir
The kinetics of a periodically driven nonlinear oscillator, bistable in a nearly resonant field, has been investigated theoretically and through analogue experiments. An activation dependence of the probabilities of fluctuational transitions between
A theoretical study of delayed feedback in spin-torque nano-oscillators is presented. A macrospin geometry is considered, where self-sustained oscillations are made possible by spin transfer torques associated with spin currents flowing perpendicular