ترغب بنشر مسار تعليمي؟ اضغط هنا

Tracer Applications of Noble Gas Radionuclides in the Geosciences

57   0   0.0 ( 0 )
 نشر من قبل Zheng-Tian Lu
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The noble gas radionuclides, including 81Kr (half-life = 229,000 yr), 85Kr (11 yr), and 39Ar (269 yr), possess nearly ideal chemical and physical properties for studies of earth and environmental processes. Recent advances in Atom Trap Trace Analysis (ATTA), a laser-based atom counting method, have enabled routine measurements of the radiokrypton isotopes, as well as the demonstration of the ability to measure 39Ar in environmental samples. Here we provide an overview of the ATTA technique, and a survey of recent progress made in several laboratories worldwide. We review the application of noble gas radionuclides in the geosciences and discuss how ATTA can help advance these fields, specifically determination of groundwater residence times using 81Kr, 85Kr, and 39Ar; dating old glacial ice using 81Kr; and an 39Ar survey of the main water masses of the oceans, to study circulation pathways and estimate mean residence times. Other scientific questions involving deeper circulation of fluids in the Earths crust and mantle also are within the scope of future applications. We conclude that the geoscience community would greatly benefit from an ATTA facility dedicated to this field, with instrumentation for routine measurements, as well as for research on further development of ATTA methods.


قيم البحث

اقرأ أيضاً

Neural networks have become increasingly prevalent within the geosciences, although a common limitation of their usage has been a lack of methods to interpret what the networks learn and how they make decisions. As such, neural networks have often be en used within the geosciences to most accurately identify a desired output given a set of inputs, with the interpretation of what the network learns used as a secondary metric to ensure the network is making the right decision for the right reason. Neural network interpretation techniques have become more advanced in recent years, however, and we therefore propose that the ultimate objective of using a neural network can also be the interpretation of what the network has learned rather than the output itself. We show that the interpretation of neural networks can enable the discovery of scientifically meaningful connections within geoscientific data. In particular, we use two methods for neural network interpretation called backwards optimization and layerwise relevance propagation, both of which project the decision pathways of a network back onto the original input dimensions. To the best of our knowledge, LRP has not yet been applied to geoscientific research, and we believe it has great potential in this area. We show how these interpretation techniques can be used to reliably infer scientifically meaningful information from neural networks by applying them to common climate patterns. These results suggest that combining interpretable neural networks with novel scientific hypotheses will open the door to many new avenues in neural network-related geoscience research.
Amorphous ice has long been invoked as a means for trapping extreme volatiles into solids, explaining the abundances of these species in comets and planetary atmospheres. Experiments have shown that such trapping is possible and have been used to est imate the abundances of each species in primitive ices after they formed. However, these experiments have been carried out at deposition rates which exceed those expected in a molecular cloud or solar nebula by many orders of magnitude. Here we develop a numerical model which reproduces the experimental results and apply it to those conditions expected in molecular clouds and protoplanetary disks. We find that two regimes of ice trapping exist: `burial trapping where the ratio of trapped species to water in the ice reflects that same ratio in the gas and `equilibrium trapping where the ratio in the ice depends only on the partial pressure of the trapped species in the gas. The boundary between these two regimes is set by both the temperature and rate of ice deposition. Such effects must be accounted for when determining the source of trapped volatiles during planet formation.
98 - M. Aladi , R. Bolla , P. Racz 2015
We report a study of high harmonic generation from noble gas clusters of xenon atoms in a gas jet. Harmonic spectra were investigated as a function of backing pressure, showing spectral shifts due to the nanoplasma electrons in the clusters. At certa in value of laser intensity this process may oppose the effect of the well-known ionization-induced blueshift. In addition, these cluster-induced harmonic redshifts may give the possibility to estimate cluster density and cluster size in the laser-gas jet interaction range.
322 - Guobin Liu 2018
Alkali metal-noble gas NMR gyroscope is widely used for precision rotation measurement in fundamental and applied physics. By numerically simulating the alkali-nuclear-nuclear tri-spin dynamics, we investigate the dependence of gyroscope response on alkali spin relaxation time and nuclear spin magnetization. We found additional resonance peaks appear due to a new source of instability, namely the inherent multistability of tri-spin dynamics. The numerical simulation results agree well with the recent experiment, enabling a better understanding and exploitation of the gyroscope signal.
With numerical calculation of coupled Bloch equations, we have simulated the spin dynamics of nuclear magnetic resonance gyroscope based on alkali metal-noble gas hybrid trispin system. From the perspective of damping harmonic oscillator, a thorough analysis of the response dynamics is demonstrated. The simulation results shows a linear increasing response of gyroscope signal while the noblge gas nuclear spin magnetization and alkali atomic spin lifetime parameters are at the over damping condition. An upper limit of response is imposed on the NMR gyroscope signal due to the inherent dynamics of the hybrid trispin system. The results agrees with present available experimental results and provide useful guidings for future experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا