ﻻ يوجد ملخص باللغة العربية
Let f:X->X be a morphism of a variety over a number field K. We consider local conditions and a Bruaer-Manin condition, defined by Hsia and Silverman, for the orbit of a point P in X(K) to be disjoint from a subvariety V of X, i.e., the intersection of the orbit of P with V is empty. We provide evidence that the dynamical Brauer-Manin condition is sufficient to explain the lack of points in the intersection of the orbit of P with V; this evidence stems from a probabilistic argument as well as unconditional results in the case of etale maps.
Let k be a perfect field of characteristic p>0. We prove the existence of ascending and descending slope filtrations for Shimura p-divisible objects over k. We use them to classify rationally these objects over bar k. Among geometric applications, we
Let $k$ be a number field. We give an explicit bound, depending only on $[k:mathbf{Q}]$ and the discriminant of the N{e}ron--Severi lattice, on the size of the Brauer group of a K3 surface $X/k$ that is geometrically isomorphic to the Kummer surface
We construct unramified central simple algebras representing 2-torsion classes in the Brauer group of a hyperelliptic curve, and show that every 2-torsion class can be constructed this way when the curve has a rational Weierstrass point or when the b
We prove new results on splitting Brauer classes by genus 1 curves, settling in particular the case of degree 7 classes over global fields. Though our method is cohomological in nature, and proceeds by considering the more difficult problem of splitt
Let $Y$ be a principal homogeneous space of an abelian surface, or a K3 surface, over a finitely generated extension of $mathbb{Q}$. In 2008, Skorobogatov and Zarhin showed that the Brauer group modulo algebraic classes $text{Br}, Y/ text{Br}_1, Y$ i