ترغب بنشر مسار تعليمي؟ اضغط هنا

Social Network Generation and Role Determination Based on Smartphone Data

120   0   0.0 ( 0 )
 نشر من قبل Mustafa Akbas
 تاريخ النشر 2013
والبحث باللغة English




اسأل ChatGPT حول البحث

We deal with the problem of automatically generating social networks by analyzing and assessing smartphone usage and interaction data. We start by assigning weights to the different types of interactions such as messaging, email, phone calls, chat and physical proximity. Next, we propose a ranking algorithm which recognizes the pattern of interaction taking into account the changes in the collected data over time. Both algorithms are based on recent findings from social network research.



قيم البحث

اقرأ أيضاً

Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging wo rk in social neuroscience that leverages tools from network analysis has begun to pursue this issue, advancing knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individuals social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementation of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.
In many real-world scenarios, it is nearly impossible to collect explicit social network data. In such cases, whole networks must be inferred from underlying observations. Here, we formulate the problem of inferring latent social networks based on ne twork diffusion or disease propagation data. We consider contagions propagating over the edges of an unobserved social network, where we only observe the times when nodes became infected, but not who infected them. Given such node infection times, we then identify the optimal network that best explains the observed data. We present a maximum likelihood approach based on convex programming with a l1-like penalty term that encourages sparsity. Experiments on real and synthetic data reveal that our method near-perfectly recovers the underlying network structure as well as the parameters of the contagion propagation model. Moreover, our approach scales well as it can infer optimal networks of thousands of nodes in a matter of minutes.
Risk and response communication of public agencies through social media played a significant role in the emergence and spread of novel Coronavirus (COVID-19) and such interactions were echoed in other information outlets. This study collected time-se nsitive online social media data and analyzed such communication patterns from public health (WHO, CDC), emergency (FEMA), and transportation (FDOT) agencies using data-driven methods. The scope of the work includes a detailed understanding of how agencies communicate risk information through social media during a pandemic and influence community response (i.e. timing of lockdown, timing of reopening) and disease outbreak indicators (i.e. number of confirmed cases, number of deaths). The data includes Twitter interactions from different agencies (2.15K tweets per agency on average) and crowdsourced data (i.e. Worldometer) on COVID-19 cases and deaths were observed between February 21, 2020 and June 06, 2020. Several machine learning techniques such as (i.e. topic mining and sentiment ratings over time) are applied here to identify the dynamics of emergent topics during this unprecedented time. Temporal infographics of the results captured the agency-levels variations over time in circulating information about the importance of face covering, home quarantine, social distancing and contact tracing. In addition, agencies showed differences in their discussions about community transmission, lack of personal protective equipment, testing and medical supplies, use of tobacco, vaccine, mental health issues, hospitalization, hurricane season, airports, construction work among others. Findings could support more efficient transfer of risk and response information as communities shift to new normal as well as in future pandemics.
Population behaviours, such as voting and vaccination, depend on social networks. Social networks can differ depending on behaviour type and are typically hidden. However, we do often have large-scale behavioural data, albeit only snapshots taken at one timepoint. We present a method that jointly infers large-scale network structure and a networked model of human behaviour using only snapshot population behavioural data. This exploits the simplicity of a few parameter, geometric socio-demographic network model and a spin based model of behaviour. We illustrate, for the EU Referendum and two London Mayoral elections, how the model offers both prediction and the interpretation of our homophilic inclinations. Beyond offering the extraction of behaviour specific network structure from large-scale behavioural datasets, our approach yields a crude calculus linking inequalities and social preferences to behavioural outcomes. We give examples of potential network sensitive policies: how changes to income inequality, a social temperature and homophilic preferences might have reduced polarisation in a recent election.
66 - Dmitry Zinoviev 2020
Kompromat (the Russian word for compromising material) has been efficiently used to harass Russian political and business elites since the days of the USSR. Online crowdsourcing projects such as RuCompromat made it possible to catalog and analyze kom promat using quantitative techniques -- namely, social network analysis. In this paper, we constructed a social network of 11,000 Russian and foreign nationals affected by kompromat in Russia in 1991 -- 2020. The network has an excellent modular structure with 62 dense communities. One community contains prominent American officials, politicians, and entrepreneurs (including President Donald Trump) and appears to concern Russias controversial interference in the 2016 U.S. presidential elections. Various network centrality measures identify seventeen most central kompromat figures, with President Vladimir Putin solidly at the top. We further reveal four types of communities dominated by entrepreneurs, politicians, bankers, and law enforcement officials (siloviks), the latter disjointed from the first three.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا