ترغب بنشر مسار تعليمي؟ اضغط هنا

The EUROnu Project

92   0   0.0 ( 0 )
 نشر من قبل Rob Edgecock
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Frejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {mu}+ and {mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Frejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.

قيم البحث

اقرأ أيضاً

243 - W. Oelert 2015
CERN has a longstanding tradition of pursuing fundamental physics on extreme low and high energy scales. The present physics knowledge is successfully described by the Standard Model and the General Relativity. In the anti-matter regime many predicti ons of this established theory still remain experimentally unverified and one of the most fundamental open problems in physics concerns the question of asymmetry between particles: why is the observable and visible universe apparently composed almost entirely of matter and not of anti-matter? There is a huge interest in the very compelling scientiic case for anti-hydrogen and low energy anti-proton physics, here to name especially the Workshop on New Opportunities in the Physics Landscape at CERN which was convened in May 2009 by the CERN Directorate and culminated in the decision for the final approval of the construction of the Extra Low ENergy Antiproton (ELENA) ring by the Research Board in June 2011. ELENA is a CERN project aiming to construct a small 30 m circumference synchrotron to further decelerate anti-protons from the Antiproton Decelerator (AD) from 5.3 MeV down to 100 keV.
This is a summary of the work done by the Working Package 6 (Physics) of the EU project EUROnu during the second year of activity of the project.
85 - Eduardo Rodrigues 2019
The Scikit-HEP project is a community-driven and community-oriented effort with the aim of providing Particle Physics at large with a Python scientific toolset containing core and common tools. The project builds on five pillars that embrace the majo r topics involved in a physicists analysis work: datasets, data aggregations, modelling, simulation and visualisation. The vision is to build a user and developer community engaging collaboration across experiments, to emulate scikit-learns unified interface with Astropys embrace of third-party packages, and to improve discoverability of relevant tools.
Scikit-HEP is a community-driven and community-oriented project with the goal of providing an ecosystem for particle physics data analysis in Python. Scikit-HEP is a toolset of approximately twenty packages and a few affiliated packages. It expands t he typical Python data analysis tools for particle physicists. Each package focuses on a particular topic, and interacts with other packages in the toolset, where appropriate. Most of the packages are easy to install in many environments; much work has been done this year to provide binary wheels on PyPI and conda-forge packages. The Scikit-HEP project has been gaining interest and momentum, by building a user and developer community engaging collaboration across experiments. Some of the packages are being used by other communities, including the astroparticle physics community. An overview of the overall project and toolset will be presented, as well as a vision for development and sustainability.
Part-3 of Project X: Accelerator Reference Design, Physics Opportunities, Broader Impacts. The proposed Project X proton accelerator at Fermilab, with multi-MW beam power and highly versatile beam formatting, will be a unique world-class facility to explore particle physics at the intensity frontier. Concurrently, however, it can also facilitate important scientific research beyond traditional particle physics and provide unprecedented opportunities in applications to problems of great national importance in the nuclear energy and security sector. Part 1 is available as arXiv:1306.5022 [physics.acc-ph] and Part 2 is available as arXiv:1306.5009 [hep-ex].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا