ﻻ يوجد ملخص باللغة العربية
We construct a theory for long-distance quantum communication based on sharing entanglement through a linear chain of $N$ elementary swapping segments of length~$L=Nl$ where $l$ is the length of each elementary swap setup. Entanglement swapping is achieved by linear optics, photon counting and post-selection, and we include effects due to multi-photon sources, transmission loss and detector inefficiencies and dark counts. Specifically we calculate the resultant four-mode state shared by the two parties at the two ends of the chain, and we derive the two-photon coincidence rate expected for this state and thereby the visibility of this long-range entangled state. The expression is a nested sum with each sum extending from zero to infinite photons, and we solve the case $N=2$ exactly for the ideal case (zero dark counts, unit-efficiency detectors and no transmission loss) and numerically for $N=2$ in the non-ideal case with truncation at $n_text{max}=3$ photons in each mode. For the general case, we show that the computational complexity for the numerical solution is $n_text{max}^{12N}$.
We develop a theory and accompanying mathematical model for quantum communication via any number of intermediate entanglement swapping operations and solve numerically for up to three intermediate entanglement swapping operations. Our model yields tw
High-quality long-distance entanglement is essential for both quantum communication and scalable quantum networks. Entanglement purification is to distill high-quality entanglement from low-quality entanglement in a noisy environment and it plays a k
We report the first experimental realization of entanglement swapping over large distances in optical fibers. Two photons separated by more than two km of optical fibers are entangled, although they never directly interacted. We use two pairs of time
Based on the interaction between a three-level system and a microtoroidal resonator, we present a scheme for long-distance quantum communication in which entanglement generation with near 0.5 success probability and swaps can be implemented by accura
Despite the tremendous progress of quantum cryptography, efficient quantum communication over long distances (>1000km) remains an outstanding challenge due to fiber attenuation and operation errors accumulated over the entire communication distance.