ترغب بنشر مسار تعليمي؟ اضغط هنا

A statistical relation between the X-ray spectral index and Eddington ratio of active galactic nuclei in deep surveys

87   0   0.0 ( 0 )
 نشر من قبل Murray Brightman
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an investigation into how well the properties of the accretion flow onto a supermassive black hole may be coupled to those of the overlying hot corona. To do so, we specifically measure the characteristic spectral index, Gamma, of a power-law energy distribution, over an energy range of 2 to 10 keV, for X-ray selected, broad-lined radio-quiet AGN up to z~2 in COSMOS and E-CDF-S. We test the previously reported dependence between Gamma and black hole mass, FWHM and Eddington ratio using a sample of AGN covering a broad range in these parameters based on both the Mg ii and H-alpha emission lines with the later afforded by recent near infrared spectroscopic observations using Subaru/FMOS. We calculate the Eddington ratios, lambda_Edd, for sources where a bolometric luminosity (L_Bol) has been presented in the literature, based on SED fitting, or, for sources where these data do not exist, we calculate L_Bol using a bolometric correction to the LX, derived from a relationship between the bolometric correction, and LX/L3000. From a sample of 69 X-ray bright sources (>250 counts), where Gamma can be measured with greatest precision, with an estimate of L_Bol, we find a statistically significant correlation between Gamma and lambda_Edd, which is highly significant with a chance probability of 6.59x10^-8. A statistically significant correlation between Gamma and the FWHM of the optical lines is confirmed, but at lower significance than with lambda_Edd indicating that lambda_Edd is the key parameter driving conditions in the corona. Linear regression analysis reveals that Gamma=(0.32+/-0.05)log10 lambda_Edd+(2.27+/-0.06) and Gamma=(-0.69+/-0.11)log10(FWHM/km/s)+(4.44+/-0.42). Our results on Gamma-lambda_Edd are in very good agreement with previous results. (ABRIDGED)

قيم البحث

اقرأ أيضاً

131 - C. Ricci , L. C. Ho , A. C. Fabian 2018
The bulk of the X-ray emission in Active Galactic Nuclei (AGN) is produced very close to the accreting supermassive black hole (SMBH), in a corona of hot electrons which up scatters optical and ultraviolet photons from the accretion flow. The cutoff energy ($E_{rm C}$) of the primary X-ray continuum emission carries important information on the physical characteristics of the X-ray emitting plasma, but little is currently known about its potential relation with the properties of accreting SMBHs. Using the largest broad-band (0.3-150 keV) X-ray spectroscopic study available to date, we investigate how the corona is related to the AGN luminosity, black hole mass and Eddington ratio ($lambda_{rm Edd}$). Assuming a slab corona the median values of the temperature and optical depth of the Comptonizing plasma are $kT_{rm e}=105 pm 18$ keV and $tau=0.25pm0.06$, respectively. When we properly account for the large number of $E_{rm C}$ lower limits, we find a statistically significant dependence of the cutoff energy on the Eddington ratio. In particular, objects with $ lambda_{rm Edd}>0.1$ have a significantly lower median cutoff energy ($E_{rm C}=160pm41$ keV) than those with $lambda_{rm Edd}leq 0.1$ ($E_{rm C}=370pm51$ keV). This is consistent with the idea that radiatively compact coronae are also cooler, because they tend to avoid the region in the temperature-compactness parameter space where runaway pair production would dominate. We show that this behaviour could also straightforwardly explain the suggested positive correlation between the photon index ($Gamma$) and the Eddington ratio, being able to reproduce the observed slope of the $Gamma-lambda_{rm Edd}$ trend.
106 - D. M. Alexander 2016
We briefly review the synergy between X-ray and infrared observations for Active Galactic Nuclei (AGNs) detected in cosmic X-ray surveys, primarily with XMM-Newton, Chandra, and NuSTAR. We focus on two complementary aspects of this X-ray-infrared syn ergy (1) the identification of the most heavily obscured AGNs and (2) the connection between star formation and AGN activity. We also briefly discuss future prospects for X-ray-infrared studies over the next decade.
112 - R. Sarma , S. Tripathi , R. Misra 2015
We present a comprehensive flux resolved spectral analysis of the bright Narrow line Seyfert I AGNs, Mrk~335 and Ark~564 using observations by XMM-Newton satellite. The mean and the flux resolved spectra are fitted by an empirical model consisting of two Comptonization components, one for the low energy soft excess and the other for the high energy power-law. A broad Iron line and a couple of low energies edges are required to explain the spectra. For Mrk~335, the 0.3 - 10 keV luminosity relative to the Eddington value, L{$_{X}$}/L$_{Edd}$, varied from 0.002 to 0.06. The index variation can be empirically described as $Gamma$ = 0.6 log$_{10}$ L{$_{X}$}/L$_{Edd}$ + 3.0 for $0.005 < L{_{X}}/L_{Edd} < 0.04$. At $ L_{{X}}/L_{Edd} sim 0.04$ the spectral index changes and then continues to follow $Gamma$ = 0.6 log$_{10}$ L$_{{X}}$/L$_{Edd}$ + 2.7, i.e. on a parallel track. We confirm that the result is independent of the specific spectral model used by fitting the data in the 3 - 10 keV band by only a power-law and an Iron line. For Ark~564, the index variation can be empirically described as $Gamma$ = 0.2 log$_{10}$ L$_{{X}}$/L$_{Edd}$ + 2.7 with a significantly large scatter as compared to Mrk~335. Our results indicate that for Mrk~335, there may be accretion disk geometry changes which lead to different parallel tracks. These changes could be related to structural changes in the corona or enhanced reflection at high flux levels. There does not seem to be any homogeneous or universal relationship for the X-ray index and luminosity for different AGNs or even for the same AGN.
We revisit the correlation between the mid-infrared (6 $mu$m) and hard X-ray (2--10 keV) luminosities of active galactic nuclei (AGNs) to understand the physics behind it. We construct an X-ray flux-limited sample of 571 type 1 AGNs with $f_{0.5-2.0 ,{rm keV}} > 2.4 times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$, drawn from the ROSAT Bright Survey catalog. Cross-matching the sample with infrared data taken from Wide-field Infrared Survey Explorer, we investigate the relation between the rest-frame 6 $mu$m luminosity ($L_{rm 6}$) and the rest-frame 2--10 keV luminosity ($L_{rm X}$), where $L_{rm 6}$ is corrected for the contamination of host galaxies by using the spectral energy distribution fitting technique. We confirm that $L_{rm 6}$ and $L_{rm X}$ are correlated over four orders of magnitude, in the range of $L_{rm X} = 10^{42-46}$ erg s$^{-1}$. We investigate what kinds of physical parameters regulate this correlation. We find that $L_{rm X}$/$L_{rm 6}$ clearly depends on the Eddington ratio ($lambda_{rm Edd}$) as $log lambda_{rm Edd} = -(0.56 pm 0.10) log , (L_{rm X}/L_{rm 6}) - (1.07 pm 0.05)$, even taking into account quasars that are undetected by ROSAT as well as those detected by XMM-Newton in the literature. We also add hyper-luminous quasars with $L_{rm 6}$ $>$ 10$^{46}$ erg s$^{-1}$ in the literature and perform a correlation analysis. The resultant correlation coefficient is $-0.41 pm 0.07$, indicating a moderately tight correlation between $L_{rm X}$/$L_{rm 6}$ and $lambda_{rm Edd}$. This means that AGNs with high Eddington ratios tend to have lower X-ray luminosities with respect to the mid-infrared luminosities. This dependence can be interpreted as a change in the structure of the accretion flow.
We have investigated the ensemble regularities of the equivalent widths (EWs) of MgII 2800 emission line of active galactic nuclei (AGNs), using a uniformly selected sample of 2092 Seyfert 1 galaxies and quasars at 0.45 <= z <= 0.8 in the spectroscop ic data set of Sloan Digital Sky Survey Fourth Data Release. We find a strong correlation between the EW of MgII and the AGN Eddington ratio (L/L_Edd): EW(MgII) propto (L/L_Edd)^{-0.4}. Furthermore, for AGNs with the same L/L_Edd, their EWs of MgII show no correlation with luminosity, black hole mass or line width, and the MgII line luminosity is proportional to continuum luminosity, as expected by photoionization theory. Our result shows that MgII EW is not dependent on luminosity, but is solely governed by L/L_Edd.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا