ﻻ يوجد ملخص باللغة العربية
We develop the full finite lepton mass formalism for the production of real photons via the Bethe-Heitler reaction of unpolarized leptons off unpolarized nucleons. Genuine lepton mass effects are described, in particular their dependence upon the lepton mass and the initial beam energy, as well as their sensitivity to the nucleon isospin. In the minimum momentum transfer region, these effects dominate the muon induced proton cross section and become significant for electron scattering at small $x_B$.
The ratio of di-lepton production cross sections on a proton, using the $gamma prightarrow l^+ l^- p$ process, above and below di-muon production threshold allows to extract the effective lepton-proton interaction, which is required to be identical f
In this work, we discuss exclusive semileptonic $B_c$-meson decays: $B_cto eta_c(J/psi)l u$ and $B_cto D(D^*)l u$ in the framework of the relativistic independent quark(RIQ) model based on an average flavor independent confining potential in equally
We note that off the quark mass shell the operators $(p_i+p_f)_mugamma_5$ and $isigma_{mu u}(p_i -p_f)^ ugamma_5$, both of which reduce to $-vec{sigma}cdotvec{E}$ in the non-relativistic limit, are no longer identical. In this paper we explore the ef
Using our solutions of the Bethe-Salpeter equation with OBE kernel in Minkowski space both for the bound and scattering states, we calculate the transition form factors for electrodisintegration of the bound system which determine the electromagnetic
The scalar three-body Bethe-Salpeter equation, with zero-range interaction, is solved in Minkowski space by direct integration of the four-dimensional integral equation. The singularities appearing in the propagators are treated properly by standard