ترغب بنشر مسار تعليمي؟ اضغط هنا

First Synoptic Maps of Photospheric Vector Magnetic Field from SOLIS/VSM: Non-Radial Magnetic Fields and Hemispheric Pattern of Helicity

133   0   0.0 ( 0 )
 نشر من قبل Sanjay Gosain
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use daily full-disk vector magnetograms from Vector Spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) system to synthesize the first Carrington maps of the photospheric vector magnetic field. We describe these maps and make a comparison of observed radial field with the radial field estimate from LOS magnetograms. Further, we employ these maps to study the hemispheric pattern of current helicity density, Hc, during the rising phase of the solar cycle 24. Longitudinal average over the 23 consecutive solar rotations shows a clear signature of the hemispheric helicity rule, i.e. Hc is predominantly negative in the North and positive in South. Although our data include the early phase of cycle 24, there appears no evidence for a possible (systematic) reversal of the hemispheric helicity rule at the beginning of cycle as predicted by some dynamo models. Further, we compute the hemispheric pattern in active region latitudes (-30 deg le theta le 30 deg) separately for weak (100< |B_r| <500 G)and strong (|B_r|>1000 G) radial magnetic fields. We find that while the current helicity of strong fields follows the well-known hemispheric rule (i.e., theta . Hc < 0), H_c of weak fields exhibits an inverse hemispheric behavior (i.e., theta . Hc > 0) albeit with large statistical scatter. We discuss two plausible scenarios to explain the opposite hemispheric trend of helicity in weak and strong field region.

قيم البحث

اقرأ أيضاً

It is generally believed that the evolution of magnetic helicity has a close relationship with solar activity. Before the launch of SDO, earlier studies have mostly used MDI/SOHO line of sight magnetograms and assumed that magnetic fields are radial when calculating magnetic helicity injection rate from photospheric magnetograms. However, this assumption is not necessarily true. Here we use the vector magnetograms and line of sight magnetograms, both taken by HMI/SDO, to estimate the effects of non-radial magnetic field on measuring magnetic helicity injection rate. We find that: 1) The effect of non-radial magnetic field on estimating tangential velocity is relatively small; 2) On estimating magnetic helicity injection rate, the effect of non-radial magnetic field is strong when active regions are observed near the limb and is relatively small when active regions are close to disk center; 3) The effect of non-radial magnetic field becomes minor if the amount of accumulated magnetic helicity is the only concern.
The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their imp ortance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Consequently, inference of magnetic fields in the photosphere, and especially in the chromosphere, is crucial to deepen our understanding not only for solar phenomena such as chromospheric and coronal heating, flares or coronal mass ejections, but also for fundamental physical topics like dynamo theory or atomic physics. In this review, we present an overview of significant advances during the last decades in measurement techniques, analysis methods, and the availability of observatories, together with some selected results. We discuss the problems of determining magnetic fields at smallest spatial scales, connected with increasing demands on polarimetric sensitivity and temporal resolution, and highlight some promising future developments for their solution.
Photospheric electric fields, estimated from sequences of vector magnetic field and Doppler measurements, can be used to estimate the flux of magnetic energy (the Poynting flux) into the corona and as time-dependent boundary conditions for dynamic mo dels of the coronal magnetic field. We have modified and extended an existing method to estimate photospheric electric fields that combines a poloidal-toroidal (PTD) decomposition of the evolving magnetic field vector with Doppler and horizontal plasma velocities. Our current, more comprehensive method, which we dub the {bf P}TD-{bf D}oppler-{bf F}LCT {bf I}deal (PDFI) technique, can now incorporate Doppler velocities from non-normal viewing angles. It uses the texttt{FISHPACK} software package to solve several two-dimensional Poisson equations, a faster and more robust approach than our previous implementations. Here, we describe systematic, quantitative tests of the accuracy and robustness of the PDFI technique using synthetic data from anelastic MHD (texttt{ANMHD}) simulations, which have been used in similar tests in the past. We find that the PDFI method has less than $1%$ error in the total Poynting flux and a $10%$ error in the helicity flux rate at a normal viewing angle $(theta=0$) and less than $25%$ and $10%$ errors respectively at large viewing angles ($theta<60^circ$). We compare our results with other inversion methods at zero viewing angle, and find that our methods estimates of the fluxes of magnetic energy and helicity are comparable to or more accurate than other methods. We also discuss the limitations of the PDFI method and its uncertainties.
185 - A. R. Yeates 2017
Accurate estimates of the horizontal electric field on the Suns visible surface are important not only for estimating the Poynting flux of magnetic energy into the corona but also for driving time-dependent magnetohydrodynamic models of the corona. I n this paper, a method is developed for estimating the horizontal electric field from a sequence of radial-component magnetic field maps. This problem of inverting Faradays law has no unique solution. Unfortunately, the simplest solution (a divergence-free electric field) is not realistically localized in regions of non-zero magnetic field, as would be expected from Ohms law. Our new method generates instead a localized solution, using a basis pursuit algorithm to find a sparse solution for the electric field. The method is shown to perform well on test cases where the input magnetic maps are flux balanced, in both Cartesian and spherical geometries. However, we show that if the input maps have a significant imbalance of flux - usually arising from data assimilation - then it is not possible to find a localized, realistic, electric field solution. This is the main obstacle to driving coronal models from time sequences of solar surface magnetic maps.
We present a method for determining directions of magnetic field vectors in a spiral galaxy using two synchrotron polarization maps, an optical image, and a velocity field. The orientation of the transverse magnetic field is determined with a synchro tron polarization map of higher frequency band and the $180^circ$-ambiguity is solved by using sign of the Rotation Measure (RM) after determining geometrical orientation of a disk based on a assumption of trailing spiral arms. The advantage of this method is that direction of magnetic vector for each line of sight through the galaxy can be inexpensively determined with easily available data and with simple assumptions. We applied this method to three nearby spiral galaxies using archival data obtained with the Very Large Array (VLA) to demonstrate how it works. The three galaxies have both clockwise and counter-clockwise magnetic fields, which implies that all three galaxies are not classified in simple Axis-Symmetric type but types of higher modes and that magnetic reversals commonly exist.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا