ترغب بنشر مسار تعليمي؟ اضغط هنا

3D-HST Data Release v3.0: Extremely Deep Spectra in the UDF and WFC3 Mosaics in the 3D-HST/CANDELS Fields

75   0   0.0 ( 0 )
 نشر من قبل Rachel Bezanson
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

3D-HST is a 248-orbit Treasury program to provide WFC3 and ACS grism spectroscopy over four extra-galactic fields (AEGIS, COSMOS, GOODS-South, and UDS), augmented with previously obtained data in GOODS-North. We present a new data release of the 3D-HST survey, version v3.0. This release follows the initial v0.5 release that accompanied the survey description paper (Brammer et al. 2012). The new v3.0 release includes the deepest near-IR HST grism spectra currently in existence, extracted from the 8-17 orbit depth observations in the Hubble Ultra Deep Field. Contamination-corrected 2D and 1D spectra, as well as derived redshifts, are made available for >250 objects in this 2x2field. The spectra are of extraordinary quality, and show emission features in many galaxies as faint as F140W=26-27, absorption features in quiescent galaxies at z~2, and several active galactic nuclei. In addition to these extremely deep grism data we provide reduced WFC3 F125W, F140W, and F160W image mosaics of all five 3D-HST/CANDELS fields.

قيم البحث

اقرأ أيضاً

The 3D-HST and CANDELS programs have provided WFC3 and ACS spectroscopy and photometry over ~900 square arcminutes in five fields: AEGIS, COSMOS, GOODS-North, GOODS-South, and the UKIDSS UDS field. All these fields have a wealth of publicly available imaging datasets in addition to the HST data, which makes it possible to construct the spectral energy distributions (SEDs) of objects over a wide wavelength range. In this paper we describe a photometric analysis of the CANDELS and 3D-HST HST imaging and the ancillary imaging data at wavelengths 0.3um to 8um. Objects were selected in the WFC3 near-IR bands, and their SEDs were determined by carefully taking the effects of the point spread function in each observation into account. A total of 147 distinct imaging datasets were used in the analysis. The photometry is made available in the form of six catalogs: one for each field, as well as a master catalog containing all objects in the entire survey. We also provide derived data products: photometric redshifts, determined with the EAZY code, and stellar population parameters determined with the FAST code. We make all the imaging data that were used in the analysis available, including our reductions of the WFC3 imaging in all five fields. 3D-HST is a spectroscopic survey with the WFC3 and ACS grisms, and the photometric catalogs presented here constitute a necessary first step in the analysis of these grism data. All the data presented in this paper are available through the 3D-HST website.
We determine the intrinsic, 3-dimensional shape distribution of star-forming galaxies at 0<z<2.5, as inferred from their observed projected axis ratios. In the present-day universe star-forming galaxies of all masses 1e9 - 1e11 Msol are predominantly thin, nearly oblate disks, in line with previous studies. We now extend this to higher redshifts, and find that among massive galaxies (M* > 1e10 Msol) disks are the most common geometric shape at all z < 2. Lower-mass galaxies at z>1 possess a broad range of geometric shapes: the fraction of elongated (prolate) galaxies increases toward higher redshifts and lower masses. Galaxies with stellar mass 1e9 Msol (1e10 Msol) are a mix of roughly equal numbers of elongated and disk galaxies at z~1 (z~2). This suggests that galaxies in this mass range do not yet have disks that are sustained over many orbital periods, implying that galaxies with present-day stellar mass comparable to that of the Milky Way typically first formed such sustained stellar disks at redshift z~1.5-2. Combined with constraints on the evolution of the star formation rate density and the distribution of star formation over galaxies with different masses, our findings imply that, averaged over cosmic time, the majority of stars formed in disks.
We analyze the resolved stellar populations of 473 massive star-forming galaxies at 0.7 < z < 1.5, with multi-wavelength broad-band imaging from CANDELS and Halpha surface brightness profiles at the same kiloparsec resolution from 3D-HST. Together, t his unique data set sheds light on how the assembled stellar mass is distributed within galaxies, and where new stars are being formed. We find the Halpha morphologies to resemble more closely those observed in the ACS I band than in the WFC3 H band, especially for the larger systems. We next derive a novel prescription for Halpha dust corrections, which accounts for extra extinction towards HII regions. The prescription leads to consistent SFR estimates and reproduces the observed relation between the Halpha/UV luminosity ratio and visual extinction, both on a pixel-by-pixel and on a galaxy-integrated level. We find the surface density of star formation to correlate with the surface density of assembled stellar mass for spatially resolved regions within galaxies, akin to the so-called main sequence of star formation established on a galaxy-integrated level. Deviations from this relation towards lower equivalent widths are found in the inner regions of galaxies. Clumps and spiral features, on the other hand, are associated with enhanced Halpha equivalent widths, bluer colors, and higher specific star formation rates compared to the underlying disk. Their Halpha/UV luminosity ratio is lower than that of the underlying disk, suggesting the ACS clump selection preferentially picks up those regions of elevated star formation activity that are the least obscured by dust. Our analysis emphasizes that monochromatic studies of galaxy structure can be severely limited by mass-to-light ratio variations due to dust and spatially inhomogeneous star formation histories.
We analyze the star-forming and structural properties of 45 massive (log(M/Msun)>10) compact star-forming galaxies (SFGs) at 2<z<3 to explore whether they are progenitors of compact quiescent galaxies at z~2. The optical/NIR and far-IR Spitzer/Hersch el colors indicate that most compact SFGs are heavily obscured. Nearly half (47%) host an X-ray bright AGN. In contrast, only about 10% of other massive galaxies at that time host AGNs. Compact SFGs have centrally-concentrated light profiles and spheroidal morphologies similar to quiescent galaxies, and are thus strikingly different from other SFGs. Most compact SFGs lie either within the SFR-M main sequence (65%) or below (30%), on the expected evolutionary path towards quiescent galaxies. These results show conclusively that galaxies become more compact before they lose their gas and dust, quenching star formation. Using extensive HST photometry from CANDELS and grism spectroscopy from the 3D-HST survey, we model their stellar populations with either exponentially declining (tau) star formation histories (SFHs) or physically-motivated SFHs drawn from semi-analytic models (SAMs). SAMs predict longer formation timescales and older ages ~2 Gyr, which are nearly twice as old as the estimates of the tau models. While both models yield good SED fits, SAM SFHs better match the observed slope and zero point of the SFR-M main sequence. Some low-mass compact SFGs (log(M/Msun)=10-10.6) have younger ages but lower sSFRs than that of more massive galaxies, suggesting that the low-mass galaxies reach the red sequence faster. If the progenitors of compact SFGs are extended SFGs, state-of-the-art SAMs show that mergers and disk instabilities are both able to shrink galaxies, but disk instabilities are more frequent (60% versus 40%) and form more concentrated galaxies. We confirm this result via high-resolution hydrodynamic simulations.
219 - Shi-Ying Lu 2019
Based on a large sample of massive ($M_{*}geq 10^{10} M_{odot}$) compact galaxies at $1.0 < z < 3.0$ in five 3D-HST/CANDELS fields, we quantify the fractional abundance and comoving number density of massive compact galaxies as a function of redshift . The samples of compact quiescent galaxies (cQGs) and compact star-forming galaxies (cSFGs) are constructed by various selection criteria of compact galaxies in literatures, and the effect of compactness definition on abundance estimate is proved to be remarkable, particularly for the cQGs and cSFGs at high redshifts. Regardless of the compactness criteria adopted, their overall redshift evolutions of fractional abundance and number density are found to be rather similar. Large samples of the cQGs exhibit a sustaining increase in number density from $z sim 3$ to 2 and a plateau at $1<z<2$. For massive cSFGs, a plateau in the number density at $2<z<3$ can be found, as well as a continuous drop from $z sim 2$ to 1. The evolutionary trends of the cQG and cSFG abundances support the scenario that the cSFGs at $z geq 2$ may have been rapidly quenched into quiescent phase via violent dissipational processes such as major merger and disk instabilities. Rarity of the cSFGs at lower redshifts ($z < 1$) can be interpreted by the decrease of gas reservoirs in dark matter halos and the consequent low efficiency of gas-rich dissipation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا