ترغب بنشر مسار تعليمي؟ اضغط هنا

The HST eXtreme Deep Field XDF: Combining all ACS and WFC3/IR Data on the HUDF Region into the Deepest Field Ever

44   0   0.0 ( 0 )
 نشر من قبل Pascal Oesch
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. D. Illingworth




اسأل ChatGPT حول البحث

The eXtreme Deep Field (XDF) combines data from ten years of observations with the HST Advanced Camera for Surveys (ACS) and the Wide-Field Camera 3 Infra-Red (WFC3/IR) into the deepest image of the sky ever in the optical/near-IR. Since the initial observations on the Hubble Ultra-Deep Field (HUDF) in 2003, numerous surveys and programs, including supernova followup, HUDF09, CANDELS, and HUDF12 have contributed additional imaging data across the HUDF region. Yet these have never been combined and made available as one complete ultra-deep optical and near-infrared image dataset. We do so now for the eXtreme Deep Field (XDF) program. Our new and improved processing techniques provide higher quality reductions of the total dataset. All WFC3 near-IR and optical ACS data sets have been fully combined and accurately matched, resulting in the deepest imaging ever taken at these wavelengths ranging from 29.1 to 30.3 AB mag (5sigma in a 0.35 diameter aperture) in 9 filters. The gains in the optical for the four filters done in the original ACS HUDF correspond to a typical improvement of 0.15 mag, with gains of 0.25 mag in the deepest areas. Such gains are equivalent to adding ~130 to ~240 orbits of ACS data to the HUDF. Improved processing alone results in a typical gain of ~0.1 mag. Our 5sigma (optical+near-IR) SExtractor catalogs reveal about 14140 sources in the full field and about 7121 galaxies in the deepest part of the XDF (the HUDF09 region). The XDF is the deepest image of the universe ever taken, reaching, in the combined image for a flat f_nu source, to 31.2 AB mag 5sigma (32.9 at 1sigma) in a 0.35 diameter aperture.

قيم البحث

اقرأ أيضاً

77 - R.J. Bouwens 2009
We utilize the newly-acquired, ultra-deep WFC3/IR observations over the HUDF to search for star-forming galaxies at z~8-8.5, only 600 million years from recombination, using a Y_{105}-dropout selection. The new 4.7 arcmin**2 WFC3/IR observations reac h to ~28.8 AB mag (5 sigma) in the Y_{105}J_{125}H_{160} bands. These remarkable data reach ~1.5 AB mag deeper than the previous data over the HUDF, and now are an excellent match to the HUDF optical ACS data. For our search criteria, we use a two-color Lyman-Break selection technique to identify z~8-8.5 Y_{105}-dropouts. We find 5 likely z~8-8.5 candidates. The sources have H_{160}-band magnitudes of ~28.3 AB mag and very blue UV-continuum slopes, with a median estimated beta of <~-2.5 (where f_{lambda}propto lambda^{beta}). This suggests that z~8 galaxies are not only essentially dust free but also may have very young ages or low metallicities. The observed number of Y_{105}-dropout candidates is smaller than the 20+/-6 sources expected assuming no evolution from z~6, but is consistent with the 5 expected extrapolating the Bouwens et al. 2008 LF results to z~8. These results provide evidence that the evolution in the LF seen from z~7 to z~3 continues to z~8. The remarkable improvement in the sensitivity of WFC3/IR has enabled HST to cross a threshold, revealing star-forming galaxies at z~8-9.
We present the results of a systematic search for galaxies in the redshift range z = 6 - 9, within the new, deep, near-infrared imaging of the Hubble Ultra Deep Field provided by the Wide Field Camera 3 (WFC3) on HST. We have performed full SED fitti ng to the optical+infrared photometry of all high-redshift galaxy candidates detected at greater than 5-sigma in at least one of the WFC3/IR broad-band filters. After rejection of contaminants, the result is a sample of 49 galaxies with primary redshift solutions z > 5.9. Our sample, selected without recourse to specific colour cuts, re-selects all but the faintest one of the 16 z-drops selected by Oesch et al. (2009), recovers all 5 of the Y-drops reported by Bouwens et al. (2009), and adds a further 29 galaxy candidates, of which 12 lie beyond z = 6.3, and 4 lie beyond z = 7. We also present confidence intervals on our photometric redshift estimates, and caution that acceptable low-redshift (z < 2) solutions exist for 28 out of the 37 galaxies at z > 6.3, and for all 8 galaxy candidates at z > 7.5. Nevertheless, the very highest redshift candidates appear to be strongly clustered in the field. We derive new estimates of the ultraviolet galaxy luminosity function at z = 7 and z = 8. Where our results are most robust, at a characteristic luminosity M(1500) ~ -19.5 (AB), we find that the comoving number density of galaxies declines by a factor of ~ 2.5 between z = 6 and z = 7, and by a further factor of ~ 2 by z = 8. These results suggest that it is difficult for the observed population of high-redshift star-forming galaxies to achieve reionisation by z ~ 6 without a significant contribution from galaxies well below the detection limits, plus alterations in the escape fraction of ionising photons and/or continued vigorous star formation at z > 15.
We present the first science results from our Hubble Space Telescope Survey for Lyman limit absorption systems (LLS) using the low dispersion spectroscopic modes of the Advanced Camera for Surveys and the Wide Field Camera 3. Through an analysis of 7 1 quasars, we determine the incidence frequency of LLS per unit redshift and per unit path length, l(z) and l(x) respectively, over the redshift range 1 < z< 2.6, and find a weighted mean of l(x)=0.29 +/-0.05 for 2.0 < z < 2.5 through a joint analysis of our sample and that of Ribaudo et al. (2011). Through stacked spectrum analysis, we determine a median (mean) value of the mean free path to ionizing radiation at z=2.4 of lambda_mfp = 243(252)h^(-1) Mpc, with an error on the mean value of +/- 43h^(-1) Mpc. We also re-evaluate the estimates of lambda_mfp from Prochaska et al. (2009) and place constraints on the evolution of lambda_mfp with redshift, including an estimate of the breakthrough redshift of z = 1.6. Consistent with results at higher z, we find that a significant fraction of the opacity for absorption of ionizing photons comes from systems with N_HI <= 10^{17.5} cm^(-2) with a value for the total Lyman opacity of tau_lyman = 0.40 +/- 0.15. Finally, we determine that at minimum, a 5-parameter (4 power-law) model is needed to describe the column density distribution function f(N_HI, X) at z sim 2.4, find that f(N_HI,X) undergoes no significant change in shape between z sim 2.4 and z sim 3.7, and provide our best fit model for f(N_HI,X).
We have submitted to MAST the 1.5 version data release of the Hubble Legacy Fields (HLF) project covering a 25 x 25 arcmin area over the GOODS-S (ECDF-S) region from the HST archival program AR-13252. The release combines exposures from Hubbles two m ain cameras, the Advanced Camera for Surveys (ACS/WFC) and the Wide Field Camera 3 (WFC3/IR), taken over more than a decade between mid-2002 to the end of 2016. The HLF includes essentially all optical (ACS/WFC F435W, F606W, F775W, F814W and F850LP filters) and infrared (WFC3/ IR F098M, F105W, F125W, F140W and F160W filters) data taken by Hubble over the original CDF-S region including the GOODS-S, ERS, CANDELS and many other programs (31 in total). The data has been released at https://archive.stsci.edu/prepds/hlf/ as images with a common astrometric reference frame, with corresponding inverse variance weight maps. We provide one image per filter of WFC3/IR images at 60 mas per pixel resolution and two ACS/WFC images per filter, at both 30 and 60 mas per pixel. Since this comprehensive dataset combines data from 31 programs on the GOODS-S/CDF-S, the AR proposal identified the MAST products by the global name Hubble Legacy Field, with this region being identified by HLF-GOODS-S. This dataset complements that of the Frontier Fields program. The total incorporated in the HLF-GOODS-S is 5.8 Msec in 7211 exposures from 2442 orbits. This is ~70% of a HST full cycle!
We present a deep color-magnitude diagram for individual stars in the halo of the nearby spiral galaxy M81, at a projected distance of 19 kpc, based on data taken with the Advanced Camera for Surveys on the Hubble Space Telescope (HST). The color mag nitude diagram reveals a red giant branch that is narrow and fairly blue, and a horizontal branch that has stars that lie mostly redward of the RR Lyrae instability strip. We derive a mean metallicity of [M/H] = -1.15 +- 0.11 and age of 9 +- 2 Gyr for the dominant population in our field, from the shape of the red giant branch, the magnitude of the red clump, and the location of the red giant branch bump. We compare our metallicity and age results with those found previously for stars in different locations within M81, and in the spheroids of other nearby galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا