ﻻ يوجد ملخص باللغة العربية
We present here the first results from the Chandra ERA (Environments of Radio-loud AGN) Large Project, characterizing the cluster environments of a sample of 26 radio-loud AGN at z ~ 0.5 that covers three decades of radio luminosity. This is the first systematic X-ray environmental study at a single epoch, and has allowed us to examine the relationship between radio luminosity and cluster environment without the problems of Malmquist bias. We have found a weak correlation between radio luminosity and host cluster X-ray luminosity, as well as tentative evidence that this correlation is driven by the subpopulation of low-excitation radio galaxies, with high-excitation radio galaxies showing no significant correlation. The considerable scatter in the environments may be indicative of complex relationships not currently included in feedback models.
The morphology of quiescent galaxies has been found to be correlated with the activity of their central super massive black hole. In this work, we use data from the first data release of the LOFAR Two$-$Metre Sky Survey (LoTSS DR1) and the Sloan Digi
We investigate the relation between the two modes of outflow (wind and jet) in radio-loud active galactic nuclei (AGN). For this study we have carried out a systematic and homogeneous analysis of XMM-Newton spectra of a sample of 16 suitable radio-lo
We develop a formalism to model the luminosity functions (LFs) of radio-loud Active Galactic Nuclei (AGN) at GHz frequencies by the cosmological evolution of the supermassive black hole (SMBH). The mass function and Eddington ratio distributions of S
We are carrying out a search for all radio loud Active Galactic Nuclei observed with XMM-Newton, including targeted and field sources to perform a multi-wavelength study of these objects. We have cross-correlated the Veron-Cetty & Veron (2010) catalo
We carry out a systematic study of the X-ray emission from the active nuclei of the 0.02<z<0.7 2Jy sample, using Chandra and XMM-Newton observations. We combine our results with those from mid-IR, optical emission line and radio observations, and add