ﻻ يوجد ملخص باللغة العربية
In this paper I report the discovery of an O2If*/WN6 star probably still partially embedded in its parental cocoon in the star-burst cluster NGC 3603. From the observed size of the associated compact Hii region, it was possible to derive a probable dynamic age of no more than 600,000 years. Using the computed visual extinction value Av ~ 6 magnitudes, an absolute visual magnitude Mv =-5.7 mag is obtained, which for the assumed heliocentric distance of 7.6 kpc results in a bolometric luminosity of ~ 8x10^5 Lsun. Also from the V magnitude and the V-I color of the new star, and previous models for NGC3603s massive star population, we estimate its mass for the binary (O2If*/WN6 + O3If) and the single-star case (O2If*/WN6). In the former, it was found that the initial mass of each component possibly exceeded 80 Msun and 40 Msun, while in the latter MTT 58s initial mass possibly was in excess of 100 Msun.
We have used new, deep, visible and near infrared observations of the compact starburst cluster in the giant HII region NGC 3603 and its surroundings with the WFC3 on HST and HAWK-I on the VLT to study in detail the physical properties of its interme
In this letter we communicate the identification of a new Galactic O2If* star (MTT 68) isolated at a projected linear distance of 3 pc from the centre of the star-burst cluster NGC 3603. From its optical photometry I computed a bolometric luminosity
We report on the discovery of an isolated, compact HII region in the Virgo cluster. The object is located in the diffuse outer halo of NGC 4388, or could possibly be in intracluster space. Star formation can thus take place far outside the main star
The very bright and compact massive young cluster, NGC 3603, has been cited as an example of a starburst in the Milky Way and compared with the much-studied R136/30 Doradus region in the Large Magellanic Cloud. Here we build on the discovery by Mohr-
Early release science observations of the cluster NGC3603 with the WFC3 on the refurbished HST allow us to study its recent star formation history. Our analysis focuses on stars with Halpha excess emission, a robust indicator of their pre-main sequen