ﻻ يوجد ملخص باللغة العربية
Future weak lensing surveys potentially hold the highest statistical power for constraining cosmological parameters compared to other cosmological probes. The statistical power of a weak lensing survey is determined by the sky coverage, the inverse of the noise in shear measurements, and the galaxy number density. The combination of the latter two factors is often expressed in terms of $n_{rm eff}$ -- the effective number density of galaxies used for weak lensing measurements. In this work, we estimate $n_{rm eff}$ for the Large Synoptic Survey Telescope (LSST) project, the most powerful ground-based lensing survey planned for the next two decades. We investigate how the following factors affect the resulting $n_{rm eff}$ of the survey with detailed simulations: (1) survey time, (2) shear measurement algorithm, (3) algorithm for combining multiple exposures, (4) inclusion of data from multiple filter bands, (5) redshift distribution of the galaxies, and (6) masking and blending. For the first time, we quantify in a general weak lensing analysis pipeline the sensitivity of $n_{rm eff}$ to the above factors. We find that with current weak lensing algorithms, expected distributions of observing parameters, and all lensing data ($r$- and $i$-band, covering 18,000 degree$^{2}$ of sky) for LSST, $n_{rm eff} approx37$ arcmin$^{-2}$ before considering blending and masking, $n_{rm eff} approx31$ arcmin$^{-2}$ when rejecting seriously blended galaxies and $n_{rm eff} approx26$ arcmin$^{-2}$ when considering an additional 15% loss of galaxies due to masking. With future improvements in weak lensing algorithms, these values could be expected to increase by up to 20%. Throughout the paper, we also stress the ways in which $n_{rm eff}$ depends on our ability to understand and control systematic effects in the measurements.
The complete 10-year survey from the Large Synoptic Survey Telescope (LSST) will image $sim$ 20,000 square degrees of sky in six filter bands every few nights, bringing the final survey depth to $rsim27.5$, with over 4 billion well measured galaxies.
A joint analysis of the clustering of galaxies and their weak gravitational lensing signal is well-suited to simultaneously constrain the galaxy-halo connection as well as the cosmological parameters by breaking the degeneracy between galaxy bias and
Galaxy clusters have a triaxial matter distribution. The weak-lensing signal, an important part in cosmological studies, measures the projected mass of all matter along the line-of-sight, and therefore changes with the orientation of the cluster. Stu
The LSST survey will provide unprecedented statistical power for measurements of dark energy. Consequently, controlling systematic uncertainties is becoming more important than ever. The LSST observing strategy will affect the statistical uncertainty
We present the v1.0 release of CLMM, an open source Python library for the estimation of the weak lensing masses of clusters of galaxies. CLMM is designed as a standalone toolkit of building blocks to enable end-to-end analysis pipeline validation fo