ﻻ يوجد ملخص باللغة العربية
Nonlinear space-time dynamics, defined in terms of celebrated solitonic equations, brings indispensable tools for understanding, prediction and control of complex behaviors in both physical and life sciences. In this paper, we review sine-Gordon solitons, kinks and breathers as models of nonlinear excitations in complex systems in physics and in living cellular structures, both intra-cellular (DNA, protein folding and microtubules) and inter-cellular (neural impulses and muscular contractions). Key words: Sine-Gordon solitons, kinks and breathers, DNA, Protein folding, Microtubules, Neural conduction, Muscular contraction
We analyze the diffusive motion of kink solitons governed by the thermal sine-Gordon equation. We analytically calculate the correlation function of the position of the kink center as well as the diffusion coefficient, both up to second-order in temp
We consider the existence and spectral stability of static multi-kink structures in the discrete sine-Gordon equation, as a representative example of the family of discrete Klein-Gordon models. The multi-kinks are constructed using Lins method from a
We analyse the scattering of sine-Gordon breathers on a square potential well. We show that the scattering process depends not only on the vibration frequency of the breather and its incoming speed but also on its phase as well as the depth and width
We study a conjecture by Fendley, Ludwig and Saleur for the nonlinear conductance in the boundary sine-Gordon model. They have calculated the perturbative series of twisted partition functions, which require particular (unphysical) imaginary values o
In this work we analyze the possibility that soliton dynamics in a simple nonlinear model allows functionally relevant predictions of the behaviour of DNA. This suggestion was first put forward by Salerno [Phys. Rev. A, vol. 44, p. 5292 (1991)] by sh