ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic and electric properties of CaMn7O12 based multiferroic compounds: effect of electron doping

132   0   0.0 ( 0 )
 نشر من قبل Subham Majumdar
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The mixed-valent multiferroic compound CaMn7O12 is studied for its magnetic and electric properties. The compound undergoes magnetic ordering below 90 K with a helimagnetic structure followed by a low temperature magnetic anomaly observed around 43 K. The present study shows that the magnetic anomaly at 43 K is associated with thermal hysteresis indicating first order nature of the transition. The compound also shows field-cooled magnetic memory and relaxation below 43 K, although no zero-field-cooled memory is present. Clear magnetic hysteresis loop is present in the magnetization versus field measurements signifying the presence of some ferromagnetic clusters in the system. We doped trivalent La at the cite of divalent Ca expecting to enhance the fraction of Mn$^{3+}$ ions. The La doped samples show reduced magnetization, although the temperatures associated with the magnetic anomalies remain almost unaltered. Interestingly, the spontaneous electrical polarization below 90 K increases drastically on La substitution. We propose that the ground state of the pure as well as the La doped compositions contain isolated superparamagnetic like clusters, which can give rise to metastability in the form of field-cooled memory and relaxation. The ground state is not certainly spin glass type as it is evident from the absence of zero-field-cooled memory and frequency shift in the ac suceptibility measurements.



قيم البحث

اقرأ أيضاً

179 - S. Widmann , A. Gunther , E. Ruff 2016
The lacunar spinel GeV4S8 undergoes orbital and ferroelectric ordering at the Jahn-Teller transition around 30 K and exhibits antiferromagnetic order below about 14 K. In addition to this orbitally driven ferroelectricity, lacunar spinels are an inte resting material class, as the vanadium ions form V4 clusters representing stable molecular entities with a common electron distribution and a well-defined level scheme of molecular states resulting in a unique spin state per V4 molecule. Here we report detailed x-ray, magnetic susceptibility, electrical resistivity, heat capacity, thermal expansion, and dielectric results to characterize the structural, electric, dielectric, magnetic, and thermodynamic properties of this interesting material, which also exhibits strong electronic correlations. From the magnetic susceptibility, we determine a negative Curie-Weiss temperature, indicative for antiferromagnetic exchange and a paramagnetic moment close to a spin S = 1 of the V4 molecular clusters. The low-temperature heat capacity provides experimental evidence for gapped magnon excitations. From the entropy release, we conclude about strong correlations between magnetic order and lattice distortions. In addition, the observed anomalies at the phase transitions also indicate strong coupling between structural and electronic degrees of freedom. Utilizing dielectric spectroscopy, we find the onset of significant dispersion effects at the polar Jahn-Teller transition. The dispersion becomes fully suppressed again with the onset of spin order. In addition, the temperature dependencies of dielectric constant and specific heat possibly indicate a sequential appearance of orbital and polar order.
Here we report the structural, electrical and magnetic properties of Fe doped La0.7Ca0.3Mn1-xFexO3 with x = 0.0 to 1.0 prepared by conventional solid state reaction method. Simulated data on XRD shows an increase in volume with an increase in Fe ion concentration. XPS supports that Fe3+ ions directly substitute Mn3+ ions. Shifting towards lower wave-number and symmetric IR band structure confirms increase in volume and homogeneous distribution of Fe ions. Fe ion doesnt contribute in double-exchange (DE) conduction mechanism due to its stable half filled 3d orbital. The presence of Fe3+ ions encourages anti-ferromagnetism (AFM) generated by super-exchange interaction and suppress insulator-metal transition temperature (TIM). Magnetic measurements show the existence of magnetic polarons supported by increase in volume of unit cell and deviation from Curie-Weiss law.
144 - H. Kuroe , K. Aoki , R. Kino 2013
The magnetic and dielectric properties under high magnetic fields are studied in the single crystal of Cu3Mo2O9. This multiferroic compound has distorted tetrahedral spin chains. The effects of the quasi-one dimensionality and the geometrical spin fr ustration are expected to appear simultaneously. We measure the magnetoelectric current and the differential magnetization under the pulsed magnetic field up to 74 T. We also measure the electric polarization versus the electric field curve/loop under the static field up to 23 T. Dielectric properties change at the magnetic fields where the magnetization jumps are observed in the magnetization curve. Moreover, the magnetization plateaus are found at high magnetic fields.
The quadruple Calcium manganite (CaMn7O12) is a multiferroic material that exhibits a giant magnetically-induced ferroelectric polarization which makes it very interesting for magnetoelectric applications. Here, we report the Raman spectroscopy study on this compound of both the phonon modes and the low energy excitations from 4 K to room temperature. A detailed study of the Raman active phonon excitations shows that three phonon modes evidence a spin-phonon coupling at TN2 = 50 K. In particular, we show that the mode at 432 cm-1 associated to Mn(B)O6 (B position of the perovskite) rotations around the [111] cubic diagonal is impacted by the magnetic transition at 50 K and its coupling to the new modulation of the Mn spin in the (a,b) plane. At low energies, two large low energy excitations are observed at 25 and 47 cm-1. The first one disappears at 50 K and the second one at 90 K. We have associated these excitations to electro-magneto-active modes.
77 - P. Dutta , M. Das , S. Mukherjee 2019
DyMn$_2$O$_5$ is an intriguing multiferroic material showing multiple magnetic, electric and structural transitions. We present here the systematic study on the effect of Sr doping at the Dy site of DyMn$_2$O$_5$ through magnetic and dielectric measu rements. Doping of divalent Sr at the Dy site is expected to enhance the Mn$^{4+}$:Mn$^{3+}$ ratio and it will also dilute the Dy site. Our study indicates large enhancement in the magnetic anomaly observed close to 43 K, which we believe to be related to the increased ferromagnetic correlations on Sr doping. Gradual increase in coercive field at 3 K with the Sr doping and decrease in bond length of adjacent Mn$^{4+}$ ions further support the enhancement of ferromagnetic corelations in the system. The parent sample shows a large magnetocaloric effect around 12 K, the magnitude of which found to decrease with increasing Sr concentration. The doping also enhances the anomaly at around 28 K observed in the dielectric permittivity versus temperature data, and this anomaly was earlier claimed to be associated with the spin reorientation as well as a simultaneous transition from one ferroelectric state to other. The electric orderings observed below 25 K are found to be susceptible to the applied magnetic field, and supports the view of Ratcliff II {it et al.}(Phys. Rev. B {bf 72}, 060407(R)(2005)) of concomitant changes in the magnetic structure associated with the multiple electric transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا