ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological Perturbations of a Quartet of Scalar Fields with a Spatially Constant Gradient

148   0   0.0 ( 0 )
 نشر من قبل Seyen Kouwn
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the linear perturbations for the single scalar field inflation model interacting with an additional triad of scalar fields. The background solutions of the three additional scalar fields depend on spatial coordinates with a constant gradient $alpha$ and the ensuing evolution preserves the homogeneity of the cosmological principle. After we discuss the properties of background evolution including an exact solution for the exponential-type potential, we investigate the linear perturbations of the scalar and tensor modes in the background of the slow-roll inflation. In our model with small $alpha$, the comoving wavenumber has {it a lower bound} $sim alpha M_{rm P}$ to have well-defined initial quantum states. We find that cosmological quantities, for instance, the power spectrums and spectral indices of the comoving curvature and isocurvature perturbations, and the running of the spectral indices have small corrections depending on {it the lower bound}. Similar behaviors happen for the tensor perturbation with the same lower bound.

قيم البحث

اقرأ أيضاً

Starting with a `bare 4-dimensional differential manifold as a model of spacetime, we discuss the options one has for defining a volume element which can be used for physical theories. We show that one has to prescribe a scalar density sigma. Whereas conventionally sqrt{|det g_{ij}|} is used for that purpose, with g_{ij} as the components of the metric, we point out other possibilities, namely sigma as a `dilaton field or as a derived quantity from either a linear connection or a quartet of scalar fields, as suggested by Guendelman and Kaganovich.
Inflationary spatially homogeneous cosmological models within an Einstein-Aether gravitational framework are investigated. The matter source is assumed to be a scalar field which is coupled to the aether field expansion and shear scalars through the generalized harmonic scalar field potential. The evolution equations are expressed in terms of expansion-normalized variables to produce an autonomous system of ordinary differential equations suitable for numerical and local stability analysis. An analysis of the local stability of the equilibrium points indicate that there exists a range of values of the parameters in which there exists an accelerating expansionary future attractor.
84 - Paul Tod 2007
We prove well-posedness of the initial value problem for the Einstein equations for spatially-homogeneous cosmologies with data at an isotropic cosmological singularity, for which the matter content is either a cosmological constant with collisionles s particles of a single mass (possibly zero) or a cosmological constant with a perfect fluid having the radiation equation of state. In both cases, with a positive cosmological constant, these solutions, except possibly for Bianchi-type-IX, will expand forever, and be geodesically-complete into the future.
In this paper we present the study of the scalar cosmological perturbations of a single field inflationary model up to first order in deviation. The Christoffel symbols and the tensorial quantities are calculated explicitly in function of the cosmic time t. The Einstein equations are solved up-to first order in deviation and the scalar perturbations equation is derived.
81 - Marcello Ortaggio 2018
In recent literature there appeared conflicting claims about whether the Ozsvath-Robinson-Rozga family of type N electrovac spacetimes of the Kundt class with $Lambda$ is complete. We show that indeed it is.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا