ترغب بنشر مسار تعليمي؟ اضغط هنا

Lobby index as a network centrality measure

120   0   0.0 ( 0 )
 نشر من قبل Adriano J. Holanda PhD
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the lobby index (l-index for short) as a local node centrality measure for complex networks. The l-inde is compared with degree (a local measure), betweenness and Eigenvector centralities (two global measures) in the case of biological network (Yeast interaction protein-protein network) and a linguistic network (Moby Thesaurus II). In both networks, the l-index has poor correlation with betweenness but correlates with degree and Eigenvector. Being a local measure, one can take advantage by using the l-index because it carries more information about its neighbors when compared with degree centrality, indeed it requires less time to compute when compared with Eigenvector centrality. Results suggests that l-index produces better results than degree and Eigenvector measures for ranking purposes, becoming suitable as a tool to perform this task.



قيم البحث

اقرأ أيضاً

112 - Massimo Franceschet 2011
We represent collaboration of authors in computer science papers in terms of both affiliation and collaboration networks and observe how these networks evolved over time since 1960. We investigate the temporal evolution of bibliometric properties, li ke size of the discipline, productivity of scholars, and collaboration level in papers, as well as of large-scale network properties, like reachability and average separation distance among scientists, distribution of the number of scholar collaborators, network clustering and network assortativity by number of collaborators.
119 - Yuming Wang , Yanbo Long , Lai Tu 2019
Research grants have played an important role in seeding and promoting fundamental research projects worldwide. There is a growing demand for developing and delivering scientific influence analysis as a service on research grant repositories. Such an alysis can provide insight on how research grants help foster new research collaborations, encourage cross-organizational collaborations, influence new research trends, and identify technical leadership. This paper presents the design and development of a grants-based scientific influence analysis service, coined as GImpact. It takes a graph-theoretic approach to design and develop large scale scientific influence analysis over a large research-grant repository with three original contributions. First, we mine the grant database to identify and extract important features for grants influence analysis and represent such features using graph theoretic models. For example, we extract an institution graph and multiple associated aspect-based collaboration graphs, including a discipline graph and a keyword graph. Second, we introduce self-influence and co-influence algorithms to compute two types of collaboration relationship scores based on the number of grants and the types of grants for institutions. We compute the self-influence scores to reflect the grant based research collaborations among institutions and compute multiple co-influence scores to model the various types of cross-institution collaboration relationships in terms of disciplines and subject areas. Third, we compute the overall scientific influence score for every pair of institutions by introducing a weighted sum of the self-influence score and the multiple co-influence scores and conduct an influence-based clustering analysis. We evaluate GImpact using a real grant database, consisting of 2512 institutions and their grants received over a period of 14 years...
Networks are versatile representations of the interactions between entities in complex systems. Cycles on such networks represent feedback processes which play a central role in system dynamics. In this work, we introduce a measure of the importance of any individual cycle, as the fraction of the total information flow of the network passing through the cycle. This measure is computationally cheap, numerically well-conditioned, induces a centrality measure on arbitrary subgraphs and reduces to the eigenvector centrality on vertices. We demonstrate that this measure accurately reflects the impact of events on strategic ensembles of economic sectors, notably in the US economy. As a second example, we show that in the protein-interaction network of the plant Arabidopsis thaliana, a model based on cycle-centrality better accounts for pathogen activity than the state-of-art one. This translates into pathogen-targeted-proteins being concentrated in a small number of triads with high cycle-centrality. Algorithms for computing the centrality of cycles and subgraphs are available for download.
253 - Wei Chen , Shang-Hua Teng 2016
We study network centrality based on dynamic influence propagation models in social networks. To illustrate our integrated mathematical-algorithmic approach for understanding the fundamental interplay between dynamic influence processes and static ne twork structures, we focus on two basic centrality measures: (a) Single Node Influence (SNI) centrality, which measures each nodes significance by its influence spread; and (b) Shapley Centrality, which uses the Shapley value of the influence spread function --- formulated based on a fundamental cooperative-game-theoretical concept --- to measure the significance of nodes. We present a comprehensive comparative study of these two centrality measures. Mathematically, we present axiomatic characterizations, which precisely capture the essence of these two centrality measures and their fundamental differences. Algorithmically, we provide scalable algorithms for approximating them for a large family of social-influence instances. Empirically, we demonstrate their similarity and differences in a number of real-world social networks, as well as the efficiency of our scalable algorithms. Our results shed light on their applicability: SNI centrality is suitable for assessing individual influence in isolation while Shapley centrality assesses individuals performance in group influence settings.
In this paper, we present a framework for studying the following fundamental question in network analysis: How should one assess the centralities of nodes in an information/influence propagation process over a social network? Our framework systemat ically extends a family of classical graph-theoretical centrality formulations, including degree centrality, harmonic centrality, and their sphere-of-influence generalizations, to influence-based network centralities. We further extend natural group centralities from graph models to influence models, since group cooperation is essential in social influences. This in turn enables us to assess individuals centralities in group influence settings by applying the concept of Shapley value from cooperative game theory. Mathematically, using the property that these centrality formulations are Bayesian, we prove the following characterization theorem: Every influence-based centrality formulation in this family is the unique Bayesian centrality that conforms with its corresponding graph-theoretical centrality formulation. Moreover, the uniqueness is fully determined by the centrality formulation on the class of layered graphs, which is derived from a beautiful algebraic structure of influence instances modeled by cascading sequences. Our main mathematical result that layered graphs in fact form a basis for the space of influence-cascading-sequence profiles could also be useful in other studies of network influences. We further provide an algorithmic framework for efficient approximation of these influence-based centrality measures. Our study provides a systematic road map for comparative analyses of different influence-based centrality formulations, as well as for transferring graph-theoretical concepts to influence models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا