ترغب بنشر مسار تعليمي؟ اضغط هنا

Photonic band-gap in a realistic atomic diamond lattice: penetration depth, finite-size and vacancy effects

41   0   0.0 ( 0 )
 نشر من قبل Yvan Castin
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mauro Antezza




اسأل ChatGPT حول البحث

We study the effects of finite size and of vacancies on the photonic band gap recently predicted for an atomic diamond lattice. Close to a $J_g=0to J_e=1$ atomic transition, and for atomic lattices containing up to $Napprox 3times10^4$ atoms, we show how the density of states can be affected by both the shape of the system and the possible presence of a fraction of unoccupied lattice sites. We numerically predict and theoretically explain the presence of shape-induced border states and of vacancy-induced localized states appearing in the gap. We also investigate the penetration depth of the electromagnetic field which we compare to the case of an infinite system.

قيم البحث

اقرأ أيضاً

We investigate finite-size quantum effects in the dynamics of $N$ bosonic particles which are tunneling between two sites adopting the two-site Bose-Hubbard model. By using time-dependent atomic coherent states (ACS) we extend the standard mean-field equations of this bosonic Josephson junction, which are based on time-dependent Glauber coherent states. In this way we find $1/N$ corrections to familiar mean-field (MF) results: the frequency of macroscopic oscillation between the two sites, the critical parameter for the dynamical macroscopic quantum self trapping (MQST), and the attractive critical interaction strength for the spontaneous symmetry breaking (SSB) of the ground state. To validate our analytical results we perform numerical simulations of the quantum dynamics. In the case of Josephson oscillations around a balanced configuration we find that also for a few atoms the numerical results are in good agreement with the predictions of time-dependent ACS variational approach, provided that the time evolution is not too long. Also the numerical results of SSB are better reproduced by the ACS approach with respect to the MF one. Instead the onset of MQST is correctly reproduced by ACS theory only in the large $N$ regime and, for this phenomenon, the $1/N$ correction to the MF formula is not reliable.
The quantum anomalies at the edges correspond to the topological phases in the system, and the chiral edge states can reflect bulk bands topological properties. In this paper, we demonstrate a simulation of Floquet systems chiral edge states in posit ion shaken finite-size honeycomb optical lattice. Through the periodical shaking, we break the time reversal symmetry of the system, and get the topological non-trivial states with non-zero Chen number. At the topological non-trivial area, we find chiral edge states on different sides of the lattice, and the locations of chiral edge states change with the topological phase. Further, gapless boundary excitations are found to appear at the topological phase transition points. It provides a new scheme to simulate chiral edge states in the Floquet system, and promotes the study of gapless boundary excitations.
We address the challenge of realizing a Floquet-engineered Hofstadter Bose-Einstein condensate (BEC) in an ultracold atomic gas, as a general prototype for Floquet engineering. Motivated by evidence that such a BEC has been observed experimentally, w e show, using Gross-Pitaevskii simulations, how it is dynamically realized. Our simulations support the existence of such a Hofstadter BEC through both momentum-space distributions as well as real-space phase correlations. From these simulations, we identify and characterize a multistage evolution, which includes a chaotic intermediate heating stage followed by a spontaneous reentrance to the Floquet-engineered BEC. The observed behavior is reminiscent of evolution in cosmological models, which involves a similar time progression including an intermediate turbulence en route to equilibration.
We introduce and investigate a system that uses temporal resonance-induced phase space pathways to create strong coupling between an atomic Bose-Einstein condensate and a traveling optical lattice potential. We show that these pathways thread both th e classical and quantum phase space of the atom cloud, even when the optical lattice potential is arbitrarily weak. The topology of the pathways, which form web-like patterns, can by controled by changing the amplitude and period of the optical lattice. In turn, this control can be used to increase and limit the BECs center-of-mass kinetic energy to pre-specified values. Surprisingly, the strength of the atom-lattice interaction and resulting BEC heating of the center-of-mass motion is enhanced by the repulsive inter-atomic interactions.
60 - F. Damon , G. Condon , P. Cheiney 2015
Spatial gaps correspond to the projection in position space of the gaps of a periodic structure whose envelope varies spatially. They can be easily generated in cold atomic physics using finite-size optical lattice, and provide a new kind of tunnel b arriers which can be used as a versatile tool for quantum devices. We present in detail different theoretical methods to quantitatively describe these systems, and show how they can be used to realize in one dimension matter wave Fabry-Perot cavities. We also provide experimental and numerical results that demonstrate the interest of spatial gaps structures for phase space engineering. We then generalize the concept of spatial gaps in two dimensions and show that this enables to design multiply connected cavities which generate a quantum dot structure for atoms or allow to construct curved wave guides for matter waves. At last, we demonstrate that modulating in time the amplitude of the periodic structure offers a wide variety of possible atom manipulations including the control of the scattering of an incoming wave packet, the loading of cavities delimited by spatial gaps, their coupling by multiphonon processes or the realization of a tunable source of atoms. This large range of possibilities offered by space and time engineering of optical lattices demonstrates the flexibility of such band gap structures for matter wave control, quantum simulators and atomtronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا