ترغب بنشر مسار تعليمي؟ اضغط هنا

Unidirectional Amplification and Shaping of Optical Pulses by Three-Wave Mixing with Negative Phonons

65   0   0.0 ( 0 )
 نشر من قبل S. Myslivets
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A possibility to greatly enhance frequency-conversion efficiency of stimulated Raman scattering is shown by making use of extraordinary properties of three-wave mixing of ordinary and backward waves. Such processes are commonly attributed to negative-index plasmonic metamaterials. This work demonstrates the possibility to replace such metamaterials that are very challenging to engineer by readily available crystals which support elastic waves with contra-directed phase and group velocities. The main goal of this work is to investigate specific properties of indicated nonlinear optical process in short pulse regime and to show that it enables elimination of fundamental detrimental effect of fast damping of optical phonons on the process concerned. Among the applications is the possibility of creation of a family of unique photonic devices such as unidirectional Raman amplifiers and femtosecond pulse shapers with greatly improved operational properties.



قيم البحث

اقرأ أيضاً

61 - B. Zhou , X. Liu , H.R. Guo 2016
We show that a temporal soliton can induce resonant radiation by three-wave mixing nonlinearities. This constitutes a new class of resonant radiation whose spectral positions are parametrically tunable. The experimental verification is done in a peri odically poled lithium niobate crystal, where a femtosecond near-IR soliton is excited and resonant radiation waves are observed exactly at the calculated soliton phase-matching wavelengths via the sum- and difference-frequency generation nonlinearities. This extends the supercontinuum bandwidth well into the mid-IR to span 550-5000 nm and the mid-IR edge is parametrically tunable over 1000 nm by changing the three-wave mixing phase-matching condition. The results are important for bright and broadband supercontinuum generation and for frequency comb generation in quadratic nonlinear microresonators.
Coherent control is an optical technique to manipulate quantum states of matter. The coherent control of 40-THz optical phonons in diamond was demonstrated by using a pair of sub-10-fs optical pulses. The optical phonons were detected via transient t ransmittance using a pump and probe protocol. The optical and phonon interferences were observed in the transient transmittance change and its behavior was well reproduced by quantum mechanical calculations with a simple model which consists of two electronic levels and shifted harmonic oscillators.
We propose a three-mode optomechanical system to realize optical nonreciprocal transmission with unidirectional amplification, where the system consists of two coupled cavities and one mechanical resonator which interacts with only one of the cavitie s. Additionally, the optical gain is introduced into the optomechanical cavity. It is found that for a strong optical input, the optical transmission coefficient can be greatly amplified in a particular direction and suppressed in the opposite direction. The expressions of the optimal transmission coefficient and the corresponding isolation ratio are given analytically. Our results pave a way to design high-quality nonreciprocal devices based on optomechanical systems.
We implement a simple and powerful approach to characterize the domain distribution in the bulk of quadratic ferroelectric crystals via far-field second-harmonic spectroscopy. The approach is demonstrated in a lithium tantalate sample with periodic e lectric field poling and random mark-to-space ratio.
Diffraction-free Bessel beams have attracted major interest because of their stability even in regimes of nonlinear propagation and filamentation. However, Kerr nonlinear couplings are known to induce significant longitudinal intensity modulation, de trimental to the generation of uniform plasma or for applications in the processing of transparent materials. These nonlinear instabilities arise from the generation of new spatio-spectral components through an initial stage of continuous spectral broadening followed by four wave mixing. In this paper, we investigate analytically and numerically these processes and show that nonlinear instabilities can be controlled through shaping the spatial spectral phase of the input beam. This opens new routes for suppressing the nonlinear growth of new frequencies and controlling ultrashort pulse propagation in dielectrics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا