ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio-frequency electromagnetic field and vortex penetration in multilayered superconductors

120   0   0.0 ( 0 )
 نشر من قبل Takayuki Kubo
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A multilayered structure with a single superconductor layer and a single insulator layer formed on a bulk superconductor is studied. General formulae for the vortex-penetration field of the superconductor layer and the magnetic field on the bulk superconductor, which is shielded by the superconductor and insulator layers, are derived with a rigorous calculation of the magnetic field attenuation in the multilayered structure. The achievable peak surface field depends on the thickness and its material of the superconductor layer, the thickness of the insulator layer and material of the bulk superconductor. The calculation shows a good agreement with an experimental result. A combination of the thicknesses of superconductor and insulator layers to enhance the field limit can be given by the formulae for any given materials.



قيم البحث

اقرأ أيضاً

The vortex penetration field of the multilayer coating model with a single superconductor layer and a single insulator layer formed on a bulk superconductor are derived. The same formula can be applied to a model with a superconductor layer formed on a bulk superconductor without an insulator layer.
The SIS structure---a thin superconducting film on a bulk superconductor separated by a thin insulating film---was propsed as a method to protect alternative SRF materials from flux penetration by enhancing the first critical field $B_{c1}$. In this work, we show that in fact $B_{c1}$ = 0 for a SIS structure. We calculate the superheating field $B_{sh}$, and we show that it can be enhanced slightly using the SIS structure, but only for a small range of film thicknesses and only if the film and the bulk are different materials. We also show that using a multilayer instead of a single thick layer is detrimental, as this decreases $B_{sh}$ of the film. We calculate the dissipation due to vortex penetration above the $B_{sh}$ of the film, and find that it is unmanageable for SRF applications. However, we find that if a gradient in the phase of the order parameter is introduced, SIS structures may be able to shield large DC and low frequency fields. We argue that the SIS structure is not beneficial for SRF cavities, but due to recent experiments showing low-surface-resistance performance above $B_{c1}$ in cavities made of superconductors with small coherence lengths, we argue that enhancement of $B_{c1}$ is not necessary, and that bulk films of alternative materials show great promise.
We numerically study the electronic structure of a single vortex in two dimensional superconducting bilayer systems within the range of the mean-field theory. The lack of local inversion symmetry in the system is taken into account through the layer dependent Rashba spin-orbit coupling. The spatial profiles of the pair potential and the local quasiparticle density of states are calculated in the clean spin-singlet superconductor on the basis of the quasiclassical theory. In particular, we discuss the characteristic core structure in the pair-density wave state, which is spatially modulated exotic superconducting phase in a high magnetic field.
Nowadays superconductors serve in numerous applications, from high-field magnets to ultra-sensitive detectors of radiation. Mesoscopic superconducting devices, i.e. those with nanoscale dimensions, are in a special position as they are easily driven out of equilibrium under typical operating conditions. The out-of-equilibrium superconductors are characterized by non-equilibrium quasiparticles. These extra excitations can compromise the performance of mesoscopic devices by introducing, e.g., leakage currents or decreased coherence times in quantum devices. By applying an external magnetic field, one can conveniently suppress or redistribute the population of excess quasiparticles. In this article we present an experimental demonstration and a theoretical analysis of such effective control of quasiparticles, resulting in electron cooling both in the Meissner and vortex states of a mesoscopic superconductor. We introduce a theoretical model of quasiparticle dynamics which is in quantitative agreement with the experimental data.
Determining the optimal arrangement of superconducting layers to withstand large amplitude AC magnetic fields is important for certain applications such as superconducting radiofrequency cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating film/superconductor (SIS) structure, a configuration that could provide benefits in screening large AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا