ترغب بنشر مسار تعليمي؟ اضغط هنا

The Magnetic Field Morphology of the Class 0 Protostar L1157-mm

114   0   0.0 ( 0 )
 نشر من قبل Ian Stephens
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first detection of polarization around the Class 0 low-mass protostar L1157-mm at two different wavelengths. We show polarimetric maps at large scales (10 resolution at 350 um) from the SHARC-II Polarimeter and at smaller scales (1.2-4.5 at 1.3 mm) from the Combined Array for Research in Millimeter-wave Astronomy (CARMA). The observations are consistent with each other and show inferred magnetic field lines aligned with the outflow. The CARMA observations suggest a full hourglass magnetic field morphology centered about the core; this is only the second well-defined hourglass detected around a low-mass protostar to date. We apply two different methods to CARMA polarimetric observations to estimate the plane-of-sky magnetic field magnitude, finding values of 1.4 and 3.4 mG.



قيم البحث

اقرأ أيضاً

For the Class 0 protostar, L1527, we compare 131 polarization vectors from SCUPOL/JCMT, SHARP/CSO and TADPOL/CARMA observations with the corresponding model polarization vectors of four ideal-MHD, non-turbulent, cloud core collapse models. These four models differ by their initial magnetic fields before collapse; two initially have aligned fields (strong and weak) and two initially have orthogonal fields (strong and weak) with respect to the rotation axis of the L1527 core. Only the initial weak orthogonal field model produces the observed circumstellar disk within L1527. This is a characteristic of nearly all ideal-MHD, non-turbulent, core collapse models. In this paper we test whether this weak orthogonal model also has the best agreement between its magnetic field structure and that inferred from the polarimetry observations of L1527. We found that this is not the case; based on the polarimetry observations the most favored model of the four is the weak aligned model. However, this model does not produce a circumstellar disk, so our result implies that a non-turbulent, ideal-MHD global collapse model probably does not represent the core collapse that has occurred in L1527. Our study also illustrates the importance of using polarization vectors covering a large area of a cloud core to determine the initial magnetic field orientation before collapse; the inner core magnetic field structure can be highly altered by a collapse and so measurements from this region alone can give unreliable estimates of the initial field configuration before collapse.
51 - Woojin Kwon 2015
A massive envelope and a strong bipolar outflow are the two main structures characterizing the youngest protostellar systems. In order to understand the physical properties of a bipolar outflow and the relationship with those of the envelope, we obta ined a mosaic map covering the whole bipolar outflow of the youngest protostellar system L1157 with about $5$ angular resolution in CO J=2-1 using the Combined Array for Research in Millimeter-wave Astronomy. By utilizing these observations of the whole bipolar outflow, we estimate its physical properties and show that they are consistent with multiple jets. We also constrain a preferred precession direction. In addition, we observed the central envelope structure with $2$ resolution in the $lambda=1.3$ and 3 mm continua and various molecular lines: C$^{17}$O, C$^{18}$O, $^{13}$CO, CS, CN, N$_2$H$^+$, CH$_3$OH, H$_2$O, SO, and SO$_2$. All the CO isotopes and CS, CN, and N$_2$H$^+$ have been detected and imaged. We marginally detected the features that can be interpreted as a rotating inner envelope in C$^{17}$O and C$^{18}$O and as an infalling outer envelope in N$_2$H$^+$. We also estimated the envelope and central protostellar masses and found that the dust opacity spectral index changes with radius.
Context: The protostellar envelopes, outflow and large-scale chemistry of Class~0 and Class~I objects have been well-studied, but while previous works have hinted at or found a few Keplerian disks at the Class~0 stage, it remains to be seen if their presence in this early stage is the norm. Likewise, while complex organics have been detected toward some Class~0 objects, their distribution is unknown as they could reside in the hottest parts of the envelope, in the emerging disk itself or in other components of the protostellar system, such as shocked regions related to outflows. Aims: In this work, we aim to address two related issues regarding protostars: when rotationally supported disks form around deeply embedded protostars and where complex organic molecules reside in such objects. Methods: We observed the deeply embedded protostar, L483, using Atacama Large Millimeter/submillimeter Array (ALMA) Band~7 data from Cycles~1 and 3 with a high angular resolution down to $sim$~0.1$^{primeprime}$ (20~au) scales. Results: We find that the kinematics of CS~$J=7$--$6$ and H$^{13}$CN~$J=4$--$3$ are best fitted by the velocity profile from infall under conservation of angular momentum and not by a Keplerian profile. The spatial extents of the observed complex organics are consistent with an estimated ice sublimation radius of the envelope at $sim$~50~au, suggesting that the complex organics exist in the hot corino of L483. Conclusions: We find that L483 does not harbor a Keplerian disk down to at least $15$~au in radius. Instead, the innermost regions of L483 are undergoing a rotating collapse. This result highlights that some Class~0 objects contain only very small disks, or none at all, with the complex organic chemistry taking place on scales inside the hot corino of the envelope, in a region larger than the emerging disk.
98 - Ruud Visser 2013
Evaporation of water ice above 100 K in the inner few 100 AU of low-mass embedded protostars (the so-called hot core) should produce quiescent water vapor abundances of ~10^-4 relative to H2. Observational evidence so far points at abundances of only a few 10^-6. However, these values are based on spherical models, which are known from interferometric studies to be inaccurate on the relevant spatial scales. Are hot cores really that much drier than expected, or are the low abundances an artifact of the inaccurate physical models? We present deep velocity-resolved Herschel-HIFI spectra of the 3(12)-3(03) lines of H2-16O and H2-18O (1097 GHz, Eup/k = 249 K) in the low-mass Class 0 protostar NGC1333 IRAS2A. A spherical radiative transfer model with a power-law density profile is unable to reproduce both the HIFI data and existing interferometric data on the H2-18O 3(13)-2(20) line (203 GHz, Eup/k = 204 K). Instead, the HIFI spectra likely show optically thick emission from a hot core with a radius of about 100 AU. The mass of the hot core is estimated from the C18O J=9-8 and 10-9 lines. We derive a lower limit to the hot water abundance of 2x10^-5, consistent with the theoretical predictions of ~10^-4. The revised HDO/H2O abundance ratio is 1x10^-3, an order of magnitude lower than previously estimated.
We report the dramatic mid-infrared brightening between 2004 and 2006 of HOPS 383, a deeply embedded protostar adjacent to NGC 1977 in Orion. By 2008, the source became a factor of 35 brighter at 24 microns with a brightness increase also apparent at 4.5 microns. The outburst is also detected in the submillimeter by comparing APEX/SABOCA to SCUBA data, and a scattered-light nebula appeared in NEWFIRM K_s imaging. The post-outburst spectral energy distribution indicates a Class 0 source with a dense envelope and a luminosity between 6 and 14 L_sun. Post-outburst time-series mid- and far-infrared photometry shows no long-term fading and variability at the 18% level between 2009 and 2012. HOPS 383 is the first outbursting Class 0 object discovered, pointing to the importance of episodic accretion at early stages in the star formation process. Its dramatic rise and lack of fading over a six-year period hint that it may be similar to FU Ori outbursts, although the luminosity appears to be significantly smaller than the canonical luminosities of such objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا