ترغب بنشر مسار تعليمي؟ اضغط هنا

An Evolutionary Algorithm Approach to Link Prediction in Dynamic Social Networks

176   0   0.0 ( 0 )
 نشر من قبل Catherine Bliss
 تاريخ النشر 2013
والبحث باللغة English




اسأل ChatGPT حول البحث

Many real world, complex phenomena have underlying structures of evolving networks where nodes and links are added and removed over time. A central scientific challenge is the description and explanation of network dynamics, with a key test being the prediction of short and long term changes. For the problem of short-term link prediction, existing methods attempt to determine neighborhood metrics that correlate with the appearance of a link in the next observation period. Recent work has suggested that the incorporation of topological features and node attributes can improve link prediction. We provide an approach to predicting future links by applying the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to optimize weights which are used in a linear combination of sixteen neighborhood and node similarity indices. We examine a large dynamic social network with over $10^6$ nodes (Twitter reciprocal reply networks), both as a test of our general method and as a problem of scientific interest in itself. Our method exhibits fast convergence and high levels of precision for the top twenty predicted links. Based on our findings, we suggest possible factors which may be driving the evolution of Twitter reciprocal reply networks.



قيم البحث

اقرأ أيضاً

Online social network (OSN) applications provide different experiences; for example, posting a short text on Twitter and sharing photographs on Instagram. Multiple OSNs constitute a multiplex network. For privacy protection and usage purposes, accoun ts belonging to the same user in different OSNs may have different usernames, photographs, and introductions. Interlayer link prediction in multiplex network aims at identifying whether the accounts in different OSNs belong to the same person, which can aid in tasks including cybercriminal behavior modeling and customer interest analysis. Many real-world OSNs exhibit a scale-free degree distribution; thus, neighbors with different degrees may exert different influences on the node matching degrees across different OSNs. We developed an iterative degree penalty (IDP) algorithm for interlayer link prediction in the multiplex network. First, we proposed a degree penalty principle that assigns a greater weight to a common matched neighbor with fewer connections. Second, we applied node adjacency matrix multiplication for efficiently obtaining the matching degree of all unmatched node pairs. Thereafter, we used the approved maximum value method to obtain the interlayer link prediction results from the matching degree matrix. Finally, the prediction results were inserted into the priori interlayer node pair set and the above processes were performed iteratively until all unmatched nodes in one layer were matched or all matching degrees of the unmatched node pairs were equal to 0. Experiments demonstrated that our advanced IDP algorithm significantly outperforms current network structure-based methods when the multiplex network average degree and node overlapping rate are low.
It has recently become possible to record detailed social interactions in large social systems with high resolution. As we study these datasets, human social interactions display patterns that emerge at multiple time scales, from minutes to months. O n a fundamental level, understanding of the network dynamics can be used to inform the process of measuring social networks. The details of measurement are of particular importance when considering dynamic processes where minute-to-minute details are important, because collection of physical proximity interactions with high temporal resolution is difficult and expensive. Here, we consider the dynamic network of proximity-interactions between approximately 500 individuals participating in the Copenhagen Networks Study. We show that in order to accurately model spreading processes in the network, the dynamic processes that occur on the order of minutes are essential and must be included in the analysis.
Online users are typically active on multiple social media networks (SMNs), which constitute a multiplex social network. It is becoming increasingly challenging to determine whether given accounts on different SMNs belong to the same user; this can b e expressed as an interlayer link prediction problem in a multiplex network. To address the challenge of predicting interlayer links , feature or structure information is leveraged. Existing methods that use network embedding techniques to address this problem focus on learning a mapping function to unify all nodes into a common latent representation space for prediction; positional relationships between unmatched nodes and their common matched neighbors (CMNs) are not utilized. Furthermore, the layers are often modeled as unweighted graphs, ignoring the strengths of the relationships between nodes. To address these limitations, we propose a framework based on multiple types of consistency between embedding vectors (MulCEV). In MulCEV, the traditional embedding-based method is applied to obtain the degree of consistency between the vectors representing the unmatched nodes, and a proposed distance consistency index based on the positions of nodes in each latent space provides additional clues for prediction. By associating these two types of consistency, the effective information in the latent spaces is fully utilized. Additionally, MulCEV models the layers as weighted graphs to obtain better representation. In this way, the higher the strength of the relationship between nodes, the more similar their embedding vectors in the latent representation space will be. The results of our experiments on several real-world datasets demonstrate that the proposed MulCEV framework markedly outperforms current embedding-based methods, especially when the number of training iterations is small.
Social systems are in a constant state of flux with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding spreading of influence or diseases, formation of friendships, and the productivity of teams. While there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the micro-dynamics of social networks. Here we explore the dynamic social network of a densely-connected population of approximately 1000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geo-location, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-minute time slices we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores are preceded by coordination behavior in the communication networks, and demonstrating that social behavior can be predicted with high precision.
Most infectious diseases spread on a dynamic network of human interactions. Recent studies of social dynamics have provided evidence that spreading patterns may depend strongly on detailed micro-dynamics of the social system. We have recorded every s ingle interaction within a large population, mapping out---for the first time at scale---the complete proximity network for a densely-connected system. Here we show the striking impact of interaction-distance on the network structure and dynamics of spreading processes. We create networks supporting close (intimate network, up to ~1m) and longer distance (ambient network, up to ~10m) modes of transmission. The intimate network is fragmented, with weak ties bridging densely-connected neighborhoods, whereas the ambient network supports spread driven by random contacts between strangers. While there is no trivial mapping from the micro-dynamics of proximity networks to empirical epidemics, these networks provide a telling approximation of droplet and airborne modes of pathogen spreading. The dramatic difference in outbreak dynamics has implications for public policy and methodology of data collection and modeling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا