ﻻ يوجد ملخص باللغة العربية
This paper introduces Monte Carlo *-Minimax Search (MCMS), a Monte Carlo search algorithm for turned-based, stochastic, two-player, zero-sum games of perfect information. The algorithm is designed for the class of of densely stochastic games; that is, games where one would rarely expect to sample the same successor state multiple times at any particular chance node. Our approach combines sparse sampling techniques from MDP planning with classic pruning techniques developed for adversarial expectimax planning. We compare and contrast our algorithm to the traditional *-Minimax approaches, as well as MCTS enhanced with the Double Progressive Widening, on four games: Pig, EinStein Wurfelt Nicht!, Cant Stop, and Ra. Our results show that MCMS can be competitive with enhanced MCTS variants in some domains, while consistently outperforming the equivalent classic approaches given the same amount of thinking time.
Monte Carlo Tree Search (MCTS) has improved the performance of game engines in domains such as Go, Hex, and general game playing. MCTS has been shown to outperform classic alpha-beta search in games where good heuristic evaluations are difficult to o
Monte Carlo planners can often return sub-optimal actions, even if they are guaranteed to converge in the limit of infinite samples. Known asymptotic regret bounds do not provide any way to measure confidence of a recommended action at the conclusion
Many of the strongest game playing programs use a combination of Monte Carlo tree search (MCTS) and deep neural networks (DNN), where the DNNs are used as policy or value evaluators. Given a limited budget, such as online playing or during the self-p
This paper addresses Monte Carlo algorithms for calculating the Shapley-Shubik power index in weighted majority games. First, we analyze a naive Monte Carlo algorithm and discuss the required number of samples. We then propose an efficient Monte Carl
We consider Monte-Carlo Tree Search (MCTS) applied to Markov Decision Processes (MDPs) and Partially Observable MDPs (POMDPs), and the well-known Upper Confidence bound for Trees (UCT) algorithm. In UCT, a tree with nodes (states) and edges (actions)