ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Radiation candidates after Planck

472   0   0.0 ( 0 )
 نشر من قبل Alessandro Melchiorri dr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent Cosmic Microwave Background (CMB) results from the Planck satellite, combined with previous CMB data and Hubble constant measurements from the Hubble Space Telescope, provide a constraint on the effective number of relativistic degrees of freedom of Neff=3.62^{+0.50}_{-0.48} at 95% CL. These new measurements provide a unique opportunity to place limits on models containing relativistic species at the decoupling epoch. Here we review the bounds or the allowed parameter regions in sterile neutrino models, hadronic axion models as well as on extended dark sectors with additional light species based on the latest Planck CMB observations.


قيم البحث

اقرأ أيضاً

We present new constraints on the relativistic neutrino effective number N_eff and on the Cosmic Microwave Background power spectrum lensing amplitude A_L from the recent Planck 2013 data release. Including observations of the CMB large angular scale polarization from the WMAP satellite, we obtain the bounds N_eff = 3.71 +/- 0.40 and A_L = 1.25 +/- 0.13 at 68% c.l.. The Planck dataset alone is therefore suggesting the presence of a dark radiation component at 91.1% c.l. and hinting for a higher power spectrum lensing amplitude at 94.3% c.l.. We discuss the agreement of these results with the previous constraints obtained from the Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). Considering the constraints on the cosmological parameters, we found a very good agreement with the previous WMAP+SPT analysis but a tension with the WMAP+ACT results, with the only exception of the lensing amplitude.
The Planck collaboration has recently published maps of the Cosmic Microwave Background radiation with the highest precision. In the standard flat $Lambda$CDM framework, Planck data show that the Hubble constant $H_0$ is in tension with that measured by the several direct probes on $H_0$. In this paper, we perform a global analysis from the current observational data in the general dark energy models and find that resolving this tension on $H_0$ requires the dark energy model with its equation of state (EoS) $w eq-1$. Firstly, assuming the $w$ to be a constant, the Planck data favor $w < -1$ at about $2,sigma$ confidence level when combining with the supernovae SNLS compilation. And consequently the value derived on $H_0$, $H_0=71.3pm2.0$ ${rm km,s^{-1},Mpc^{-1}}$ (68% C.L.), is consistent with that from direct $H_0$ probes. We then investigate the dark energy model with a time-evolving $w$, and obtain the 68% C.L. constraints $w_0=-0.81pm0.19$ and $w_a=-1.9pm1.1$ from the Planck data and the SNLS compilation. Current data still slightly favor the Quintom dark energy scenario with EoS across the cosmological constant boundary $wequiv-1$.
We use cosmological observations in the post-Planck era to derive limits on thermally produced cosmological axions. In the early universe such axions contribute to the radiation density and later to the hot dark matter fraction. We find an upper limi t m_a < 0.67 eV at 95% C.L. after marginalising over the unknown neutrino masses, using CMB temperature and polarisation data from Planck and WMAP respectively, the halo matter power spectrum extracted from SDSS-DR7, and the local Hubble expansion rate H_0 released by the Carnegie Hubble Program based on a recalibration of the Hubble Space Telescope Key Project sample. Leaving out the local H_0 measurement relaxes the limit somewhat to 0.86 eV, while Planck+WMAP alone constrain the axion mass to 1.01 eV, the first time an upper limit on m_a has been obtained from CMB data alone. Our axion limit is therefore not very sensitive to the tension between the Planck-inferred H_0 and the locally measured value. This is in contrast with the upper limit on the neutrino mass sum, which we find here to range from 0.27 eV at 95% C.L. combining all of the aforementioned observations, to 0.84 eV from CMB data alone.
Standard cosmology predicts that prior to matter-radiation equality about 41% of the energy density was in free-streaming neutrinos. In many beyond Standard Model scenarios, however, the amount and free-streaming nature of this component is modified. For example, this occurs in models with new neutrino self-interactions or an additional dark sector with interacting light particles. We consider several extensions of the standard cosmology that include a non-free-streaming radiation component as motivated by such particle physics models and use the final Planck data release to constrain them. This release contains significant improvements in the polarization likelihood which plays an important role in distinguishing free-streaming from interacting radiation species. Fixing the total amount of energy in radiation to match the expectation from standard neutrino decoupling we find that the fraction of free-streaming radiation must be $f_mathrm{fs} > 0.8$ at 95% CL (combining temperature, polarization and baryon acoustic oscillation data). Allowing for arbitrary contributions of free-streaming and interacting radiation, the effective number of new non-free-streaming degrees of freedom is constrained to be $N_mathrm{fld} < 0.6$ at 95% CL. Cosmologies with additional radiation are also known to ease the discrepancy between the local measurement and CMB inference of the current expansion rate $H_0$. We show that including a non-free-streaming radiation component allows for a larger amount of total energy density in radiation, leading to a mild improvement of the fit to cosmological data compared to previously discussed models with only a free-streaming component.
Several unexpected features have been observed in the microwave sky at large angular scales, both by WMAP an by Planck. Among those features is a lack of both variance and correlation on the largest angular scales, alignment of the lowest multipole m oments with one another and with the motion and geometry of the Solar System, a hemispherical power asymmetry or dipolar power modulation, a preference for odd parity modes and an unexpectedly large cold spot in the Southern hemisphere. The individual p-values of the significance of these features are in the per mille to per cent level, when compared to the expectations of the best-fit inflationary $Lambda$CDM model. Some pairs of those features are demonstrably uncorrelated, increasing their combined statistical significance and indicating a significant detection of CMB features at angular scales larger than a few degrees on top of the standard model. Despite numerous detailed investigations, we still lack a clear understanding of these large-scale features, which seem to imply a violation of statistical isotropy and scale invariance of inflationary perturbations. In this contribution we present a critical analysis of our current understanding and discuss several ideas of how to make further progress.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا