ﻻ يوجد ملخص باللغة العربية
We performed the observation of the flux densities of SgrA* at 90 and 102GHz in order to detect the time lag between these frequencies using the Nobeyama Millimeter Array, which was previously reported at lower frequencies. We detected a radio flare during the observation period on 6 April 2005 and calculated the z-transformed discrete correlation function between the light curves. The time lag between these frequencies was not detected. If the expanding plasma model which explains the time lag at lower frequencies is valid, the light curve at 90GHz would be delayed with respect to the one at 102GHz. This result suggests that the plasma blobs ejected near the Galactic Center black hole may be widely diverse especially in optical thickness. Another possibility is that the major portion of the flux above 100GHz does not originate from the blobs.
We performed the observation of the flux densities of Sgr A* at 90 and 102 GHz on 6 April 2005 using the Nobeyama Millimeter Array in order to detect the time lag between these frequencies. We constructed light curves covering a few hour with 1 min b
We investigate the relationship between 5 GHz interstellar scintillation (ISS) and 15 GHz intrinsic variability of compact, radio-selected AGNs drawn from the Microarcsecond Scintillation-Induced Variability (MASIV) Survey and the Owens Valley Radio
Active galactic nuclei (AGN) are known for irregular variability on all time scales, down to intra-day variability with relative variations of a few percent within minutes to hours. On such short timescales, unexplored territory, such as the possible
We monitored BL Lacertae in the B, V, R and I bands for 14 nights during the period of 2016-2018. The source showed significant intraday variability on 12 nights. We performed colour-magnitude analysis and found that the source exhibited bluer-when-b
Active Galactic Nuclei (AGN) vary in their brightness across all wavelengths. Moreover, longer wavelength ultraviolet - optical continuum light curves appear to be delayed with respect to shorter wavelength light curves. A simple way to model these d